Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
from transformers import pipeline
|
4 |
+
from flask import Flask, render_template, request, jsonify
|
5 |
+
|
6 |
+
app = Flask(__name__)
|
7 |
+
|
8 |
+
# Define model URL and local path
|
9 |
+
MODEL_URL = "https://huggingface.co/unsloth/Qwen3-4B-128K-GGUF/resolve/main/Qwen3-4B-128K-UD-IQ1_M.gguf"
|
10 |
+
MODEL_PATH = "Qwen3-4B-128K-UD-IQ1_M.gguf"
|
11 |
+
|
12 |
+
# Function to download the model
|
13 |
+
def download_model():
|
14 |
+
if not os.path.exists(MODEL_PATH):
|
15 |
+
print("Downloading the model...")
|
16 |
+
response = requests.get(MODEL_URL, stream=True)
|
17 |
+
with open(MODEL_PATH, 'wb') as model_file:
|
18 |
+
for chunk in response.iter_content(chunk_size=128):
|
19 |
+
model_file.write(chunk)
|
20 |
+
print("Model downloaded successfully.")
|
21 |
+
|
22 |
+
# Load the model with Hugging Face Transformers pipeline
|
23 |
+
def load_model():
|
24 |
+
download_model()
|
25 |
+
model = pipeline("text-generation", model=MODEL_PATH)
|
26 |
+
return model
|
27 |
+
|
28 |
+
# Global model object
|
29 |
+
model = load_model()
|
30 |
+
|
31 |
+
@app.route('/')
|
32 |
+
def index():
|
33 |
+
return render_template('index.html')
|
34 |
+
|
35 |
+
@app.route('/generate', methods=['POST'])
|
36 |
+
def generate():
|
37 |
+
user_input = request.form['message']
|
38 |
+
response = model(user_input, max_length=100)
|
39 |
+
return jsonify({"response": response[0]['generated_text']})
|
40 |
+
|
41 |
+
if __name__ == '__main__':
|
42 |
+
app.run(debug=True)
|