Spaces:
Runtime error
Runtime error
File size: 17,710 Bytes
9971dc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
# Ke Chen
# [email protected]
# Zero-shot Audio Source Separation via Query-based Learning from Weakly-labeled Data
# The Main Script
import os
# this is to avoid the sdr calculation from occupying all cpus
os.environ["OMP_NUM_THREADS"] = "4"
os.environ["OPENBLAS_NUM_THREADS"] = "4"
os.environ["MKL_NUM_THREADS"] = "6"
os.environ["VECLIB_MAXIMUM_THREADS"] = "4"
os.environ["NUMEXPR_NUM_THREADS"] = "6"
import sys
import librosa
import numpy as np
import argparse
import logging
import torch
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from utils import collect_fn, dump_config, create_folder, prepprocess_audio
import musdb
from models.asp_model import ZeroShotASP, SeparatorModel, AutoTaggingWarpper, WhitingWarpper
from data_processor import LGSPDataset, MusdbDataset
import config
import htsat_config
from models.htsat import HTSAT_Swin_Transformer
from sed_model import SEDWrapper
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from htsat_utils import process_idc
import warnings
warnings.filterwarnings("ignore")
class data_prep(pl.LightningDataModule):
def __init__(self, train_dataset, eval_dataset, device_num, config):
super().__init__()
self.train_dataset = train_dataset
self.eval_dataset = eval_dataset
self.device_num = device_num
self.config = config
def train_dataloader(self):
train_sampler = DistributedSampler(self.train_dataset, shuffle = False) if self.device_num > 1 else None
train_loader = DataLoader(
dataset = self.train_dataset,
num_workers = config.num_workers,
batch_size = config.batch_size // self.device_num,
shuffle = False,
sampler = train_sampler,
collate_fn = collect_fn
)
return train_loader
def val_dataloader(self):
eval_sampler = DistributedSampler(self.eval_dataset, shuffle = False) if self.device_num > 1 else None
eval_loader = DataLoader(
dataset = self.eval_dataset,
num_workers = config.num_workers,
batch_size = config.batch_size // self.device_num,
shuffle = False,
sampler = eval_sampler,
collate_fn = collect_fn
)
return eval_loader
def test_dataloader(self):
test_sampler = DistributedSampler(self.eval_dataset, shuffle = False) if self.device_num > 1 else None
test_loader = DataLoader(
dataset = self.eval_dataset,
num_workers = config.num_workers,
batch_size = config.batch_size // self.device_num,
shuffle = False,
sampler = test_sampler,
collate_fn = collect_fn
)
return test_loader
def save_idc():
train_index_path = os.path.join(config.dataset_path, "hdf5s", "indexes", config.index_type + ".h5")
eval_index_path = os.path.join(config.dataset_path,"hdf5s", "indexes", "eval.h5")
process_idc(train_index_path, config.classes_num, config.index_type + "_idc.npy")
process_idc(eval_index_path, config.classes_num, "eval_idc.npy")
# Process the musdb tracks into the sample rate of 32000 Hz sample rate, the original is 44100 Hz
def process_musdb():
# use musdb as testset
test_data = musdb.DB(
root = config.musdb_path,
download = False,
subsets = "test",
is_wav = True
)
print(len(test_data.tracks))
mus_tracks = []
# in musdb, all fs is the same (44100)
orig_fs = test_data.tracks[0].rate
print(orig_fs)
for track in test_data.tracks:
temp = {}
mixture = prepprocess_audio(
track.audio,
orig_fs, config.sample_rate,
config.test_type
)
temp["mixture" ]= mixture
for dickey in config.test_key:
source = prepprocess_audio(
track.targets[dickey].audio,
orig_fs, config.sample_rate,
config.test_type
)
temp[dickey] = source
print(track.audio.shape, len(temp.keys()), temp["mixture"].shape)
mus_tracks.append(temp)
print(len(mus_tracks))
# save the file to npy
np.save("musdb-32000fs.npy", mus_tracks)
# weight average will perform in the given folder
# It will output one model checkpoint, which avergas the weight of all models in the folder
def weight_average():
model_ckpt = []
model_files = os.listdir(config.wa_model_folder)
wa_ckpt = {
"state_dict": {}
}
for model_file in model_files:
model_file = os.path.join(config.esm_model_folder, model_file)
model_ckpt.append(torch.load(model_file, map_location="cpu")["state_dict"])
keys = model_ckpt[0].keys()
for key in keys:
model_ckpt_key = torch.cat([d[key].float().unsqueeze(0) for d in model_ckpt])
model_ckpt_key = torch.mean(model_ckpt_key, dim = 0)
assert model_ckpt_key.shape == model_ckpt[0][key].shape, "the shape is unmatched " + model_ckpt_key.shape + " " + model_ckpt[0][key].shape
wa_ckpt["state_dict"][key] = model_ckpt_key
torch.save(wa_ckpt, config.wa_model_path)
# use the model to quickly separate a track given a query
# it requires four variables in config.py:
# inference_file: the track you want to separate
# inference_query: a **folder** containing all samples from the same source
# test_key: ["name"] indicate the source name (just a name for final output, no other functions)
# wave_output_path: the output folder
# make sure the query folder contain the samples from the same source
# each time, the model is able to separate one source from the track
# if you want to separate multiple sources, you need to change the query folder or write a script to help you do that
def inference():
# set exp settings
device_name = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device("cuda")
assert config.test_key is not None, "there should be a separate key"
create_folder(config.wave_output_path)
test_track, fs = librosa.load(config.inference_file, sr = None)
test_track = test_track[:,None]
print(test_track.shape)
print(fs)
# convert the track into 32000 Hz sample rate
test_track = prepprocess_audio(
test_track,
fs, config.sample_rate,
config.test_type
)
test_tracks = []
temp = [test_track]
for dickey in config.test_key:
temp.append(test_track)
temp = np.array(temp)
test_tracks.append(temp)
dataset = MusdbDataset(tracks = test_tracks) # the action is similar to musdbdataset, reuse it
loader = DataLoader(
dataset = dataset,
num_workers = 1,
batch_size = 1,
shuffle = False
)
# obtain the samples for query
queries = []
for query_file in os.listdir(config.inference_query):
f_path = os.path.join(config.inference_query, query_file)
if query_file.endswith(".wav"):
temp_q, fs = librosa.load(f_path, sr = None)
temp_q = temp_q[:, None]
temp_q = prepprocess_audio(
temp_q,
fs, config.sample_rate,
config.test_type
)
temp = [temp_q]
for dickey in config.test_key:
temp.append(temp_q)
temp = np.array(temp)
queries.append(temp)
assert config.resume_checkpoint is not None, "there should be a saved model when inferring"
sed_model = HTSAT_Swin_Transformer(
spec_size=htsat_config.htsat_spec_size,
patch_size=htsat_config.htsat_patch_size,
in_chans=1,
num_classes=htsat_config.classes_num,
window_size=htsat_config.htsat_window_size,
config = htsat_config,
depths = htsat_config.htsat_depth,
embed_dim = htsat_config.htsat_dim,
patch_stride=htsat_config.htsat_stride,
num_heads=htsat_config.htsat_num_head
)
at_model = SEDWrapper(
sed_model = sed_model,
config = htsat_config,
dataset = None
)
ckpt = torch.load(htsat_config.resume_checkpoint, map_location="cpu")
at_model.load_state_dict(ckpt["state_dict"])
trainer = pl.Trainer(
gpus = 1
)
avg_at = None
# obtain the latent embedding as query
if config.infer_type == "mean":
avg_dataset = MusdbDataset(tracks = queries)
avg_loader = DataLoader(
dataset = avg_dataset,
num_workers = 1,
batch_size = 1,
shuffle = False
)
at_wrapper = AutoTaggingWarpper(
at_model = at_model,
config = config,
target_keys = config.test_key
)
trainer.test(at_wrapper, test_dataloaders = avg_loader)
avg_at = at_wrapper.avg_at
# import seapration model
model = ZeroShotASP(
channels = 1, config = config,
at_model = at_model,
dataset = dataset
)
# resume checkpoint
ckpt = torch.load(config.resume_checkpoint, map_location="cpu")
model.load_state_dict(ckpt["state_dict"], strict= False)
exp_model = SeparatorModel(
model = model,
config = config,
target_keys = config.test_key,
avg_at = avg_at,
using_wiener = False,
calc_sdr = False,
output_wav = True
)
trainer.test(exp_model, test_dataloaders = loader)
# test the separation model, mainly in musdb
def test():
# set exp settings
device_name = "cuda" if torch.cuda.is_available() else "cpu"
device = torch.device("cuda")
assert config.test_key is not None, "there should be a separate key"
create_folder(config.wave_output_path)
# use musdb as testset
test_data = np.load(config.testset_path, allow_pickle = True)
print(len(test_data))
mus_tracks = []
# in musdb, all fs is the same (44100)
# load the dataset
for track in test_data:
temp = []
mixture = track["mixture"]
temp.append(mixture)
for dickey in config.test_key:
source = track[dickey]
temp.append(source)
temp = np.array(temp)
print(temp.shape)
mus_tracks.append(temp)
print(len(mus_tracks))
dataset = MusdbDataset(tracks = mus_tracks)
loader = DataLoader(
dataset = dataset,
num_workers = 1,
batch_size = 1,
shuffle = False
)
assert config.resume_checkpoint is not None, "there should be a saved model when inferring"
sed_model = HTSAT_Swin_Transformer(
spec_size=htsat_config.htsat_spec_size,
patch_size=htsat_config.htsat_patch_size,
in_chans=1,
num_classes=htsat_config.classes_num,
window_size=htsat_config.htsat_window_size,
config = htsat_config,
depths = htsat_config.htsat_depth,
embed_dim = htsat_config.htsat_dim,
patch_stride=htsat_config.htsat_stride,
num_heads=htsat_config.htsat_num_head
)
at_model = SEDWrapper(
sed_model = sed_model,
config = htsat_config,
dataset = None
)
ckpt = torch.load(htsat_config.resume_checkpoint, map_location="cpu")
at_model.load_state_dict(ckpt["state_dict"])
trainer = pl.Trainer(
gpus = 1
)
avg_at = None
# obtain the query of four stems from the training set
if config.infer_type == "mean":
avg_data = np.load(config.testavg_path, allow_pickle = True)[:90]
print(len(avg_data))
avgmus_tracks = []
# in musdb, all fs is the same (44100)
# load the dataset
for track in avg_data:
temp = []
mixture = track["mixture"]
temp.append(mixture)
for dickey in config.test_key:
source = track[dickey]
temp.append(source)
temp = np.array(temp)
print(temp.shape)
avgmus_tracks.append(temp)
print(len(avgmus_tracks))
avg_dataset = MusdbDataset(tracks = avgmus_tracks)
avg_loader = DataLoader(
dataset = avg_dataset,
num_workers = 1,
batch_size = 1,
shuffle = False
)
at_wrapper = AutoTaggingWarpper(
at_model = at_model,
config = config,
target_keys = config.test_key
)
trainer.test(at_wrapper, test_dataloaders = avg_loader)
avg_at = at_wrapper.avg_at
model = ZeroShotASP(
channels = 1, config = config,
at_model = at_model,
dataset = dataset
)
ckpt = torch.load(config.resume_checkpoint, map_location="cpu")
model.load_state_dict(ckpt["state_dict"], strict= False)
exp_model = SeparatorModel(
model = model,
config = config,
target_keys = config.test_key,
avg_at = avg_at,
using_wiener = config.using_wiener
)
trainer.test(exp_model, test_dataloaders = loader)
def train():
# set exp settings
# device_name = "cuda" if torch.cuda.is_available() else "cpu"
# device = torch.device("cuda")
device_num = torch.cuda.device_count()
print("each batch size:", config.batch_size // device_num)
train_index_path = os.path.join(config.dataset_path, "hdf5s","indexes", config.index_type + ".h5")
train_idc = np.load(os.path.join(config.idc_path, config.index_type + "_idc.npy"), allow_pickle = True)
eval_index_path = os.path.join(config.dataset_path,"hdf5s", "indexes", "eval.h5")
eval_idc = np.load(os.path.join(config.idc_path, "eval_idc.npy"), allow_pickle = True)
# set exp folder
exp_dir = os.path.join(config.workspace, "results", config.exp_name)
checkpoint_dir = os.path.join(config.workspace, "results", config.exp_name, "checkpoint")
if not config.debug:
create_folder(os.path.join(config.workspace, "results"))
create_folder(exp_dir)
create_folder(checkpoint_dir)
dump_config(config, os.path.join(exp_dir, config.exp_name), False)
# load data
# import dataset LGSPDataset (latent general source separation) and sampler
dataset = LGSPDataset(
index_path = train_index_path,
idc = train_idc,
config = config,
factor = 0.05,
eval_mode = False
)
eval_dataset = LGSPDataset(
index_path = eval_index_path,
idc = eval_idc,
config = config,
factor = 0.05,
eval_mode = True
)
audioset_data = data_prep(train_dataset=dataset,eval_dataset=eval_dataset,device_num=device_num, config=config)
checkpoint_callback = ModelCheckpoint(
monitor = "mixture_sdr",
filename='l-{epoch:d}-{mixture_sdr:.3f}-{clean_sdr:.3f}-{silence_sdr:.3f}',
save_top_k = 10,
mode = "max"
)
# infer at model
sed_model = HTSAT_Swin_Transformer(
spec_size=htsat_config.htsat_spec_size,
patch_size=htsat_config.htsat_patch_size,
in_chans=1,
num_classes=htsat_config.classes_num,
window_size=htsat_config.htsat_window_size,
config = htsat_config,
depths = htsat_config.htsat_depth,
embed_dim = htsat_config.htsat_dim,
patch_stride=htsat_config.htsat_stride,
num_heads=htsat_config.htsat_num_head
)
at_model = SEDWrapper(
sed_model = sed_model,
config = htsat_config,
dataset = None
)
# load the checkpoint
ckpt = torch.load(htsat_config.resume_checkpoint, map_location="cpu")
at_model.load_state_dict(ckpt["state_dict"])
trainer = pl.Trainer(
deterministic=True,
default_root_dir = checkpoint_dir,
gpus = device_num,
val_check_interval = 0.2,
# check_val_every_n_epoch = 1,
max_epochs = config.max_epoch,
auto_lr_find = True,
sync_batchnorm = True,
callbacks = [checkpoint_callback],
accelerator = "ddp" if device_num > 1 else None,
resume_from_checkpoint = None, #config.resume_checkpoint,
replace_sampler_ddp = False,
gradient_clip_val=1.0,
num_sanity_val_steps = 0,
)
model = ZeroShotASP(
channels = 1, config = config,
at_model = at_model,
dataset = dataset
)
if config.resume_checkpoint is not None:
ckpt = torch.load(config.resume_checkpoint, map_location="cpu")
model.load_state_dict(ckpt["state_dict"])
# trainer.test(model, datamodule = audioset_data)
trainer.fit(model, audioset_data)
def main():
parser = argparse.ArgumentParser(description="latent genreal source separation parser")
subparsers = parser.add_subparsers(dest = "mode")
parser_train = subparsers.add_parser("train")
parser_test = subparsers.add_parser("test")
parser_musdb = subparsers.add_parser("musdb_process")
parser_saveidc = subparsers.add_parser("save_idc")
parser_wa = subparsers.add_parser("weight_average")
parser_infer = subparsers.add_parser("inference")
args = parser.parse_args()
# default settings
logging.basicConfig(level=logging.INFO)
pl.utilities.seed.seed_everything(seed = config.random_seed)
if args.mode == "train":
train()
elif args.mode == "test":
test()
elif args.mode == "musdb_process":
process_musdb()
elif args.mode == "weight_average":
weight_average()
elif args.mode == "save_idc":
save_idc()
elif args.mode == "inference":
inference()
else:
raise Exception("Error Mode!")
if __name__ == '__main__':
main()
|