Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,1217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, sys
|
| 2 |
+
import datetime, subprocess
|
| 3 |
+
from mega import Mega
|
| 4 |
+
now_dir = os.getcwd()
|
| 5 |
+
sys.path.append(now_dir)
|
| 6 |
+
import logging
|
| 7 |
+
import shutil
|
| 8 |
+
import threading
|
| 9 |
+
import traceback
|
| 10 |
+
import warnings
|
| 11 |
+
from random import shuffle
|
| 12 |
+
from subprocess import Popen
|
| 13 |
+
from time import sleep
|
| 14 |
+
import json
|
| 15 |
+
import pathlib
|
| 16 |
+
|
| 17 |
+
import fairseq
|
| 18 |
+
import faiss
|
| 19 |
+
import gradio as gr
|
| 20 |
+
import numpy as np
|
| 21 |
+
import torch
|
| 22 |
+
from dotenv import load_dotenv
|
| 23 |
+
from sklearn.cluster import MiniBatchKMeans
|
| 24 |
+
|
| 25 |
+
from configs.config import Config
|
| 26 |
+
from i18n.i18n import I18nAuto
|
| 27 |
+
from infer.lib.train.process_ckpt import (
|
| 28 |
+
change_info,
|
| 29 |
+
extract_small_model,
|
| 30 |
+
merge,
|
| 31 |
+
show_info,
|
| 32 |
+
)
|
| 33 |
+
from infer.modules.uvr5.modules import uvr
|
| 34 |
+
from infer.modules.vc.modules import VC
|
| 35 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
| 36 |
+
|
| 37 |
+
logger = logging.getLogger(__name__)
|
| 38 |
+
|
| 39 |
+
tmp = os.path.join(now_dir, "TEMP")
|
| 40 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
| 41 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
| 42 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
|
| 43 |
+
os.makedirs(tmp, exist_ok=True)
|
| 44 |
+
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
| 45 |
+
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
|
| 46 |
+
os.environ["TEMP"] = tmp
|
| 47 |
+
warnings.filterwarnings("ignore")
|
| 48 |
+
torch.manual_seed(114514)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
load_dotenv()
|
| 52 |
+
config = Config()
|
| 53 |
+
vc = VC(config)
|
| 54 |
+
|
| 55 |
+
if config.dml == True:
|
| 56 |
+
|
| 57 |
+
def forward_dml(ctx, x, scale):
|
| 58 |
+
ctx.scale = scale
|
| 59 |
+
res = x.clone().detach()
|
| 60 |
+
return res
|
| 61 |
+
|
| 62 |
+
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
| 63 |
+
i18n = I18nAuto()
|
| 64 |
+
logger.info(i18n)
|
| 65 |
+
# 判断是否有能用来训练和加速推理的N卡
|
| 66 |
+
ngpu = torch.cuda.device_count()
|
| 67 |
+
gpu_infos = []
|
| 68 |
+
mem = []
|
| 69 |
+
if_gpu_ok = False
|
| 70 |
+
|
| 71 |
+
if torch.cuda.is_available() or ngpu != 0:
|
| 72 |
+
for i in range(ngpu):
|
| 73 |
+
gpu_name = torch.cuda.get_device_name(i)
|
| 74 |
+
if any(
|
| 75 |
+
value in gpu_name.upper()
|
| 76 |
+
for value in [
|
| 77 |
+
"10",
|
| 78 |
+
"16",
|
| 79 |
+
"20",
|
| 80 |
+
"30",
|
| 81 |
+
"40",
|
| 82 |
+
"A2",
|
| 83 |
+
"A3",
|
| 84 |
+
"A4",
|
| 85 |
+
"P4",
|
| 86 |
+
"A50",
|
| 87 |
+
"500",
|
| 88 |
+
"A60",
|
| 89 |
+
"70",
|
| 90 |
+
"80",
|
| 91 |
+
"90",
|
| 92 |
+
"M4",
|
| 93 |
+
"T4",
|
| 94 |
+
"TITAN",
|
| 95 |
+
]
|
| 96 |
+
):
|
| 97 |
+
# A10#A100#V100#A40#P40#M40#K80#A4500
|
| 98 |
+
if_gpu_ok = True # 至少有一张能用的N卡
|
| 99 |
+
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
| 100 |
+
mem.append(
|
| 101 |
+
int(
|
| 102 |
+
torch.cuda.get_device_properties(i).total_memory
|
| 103 |
+
/ 1024
|
| 104 |
+
/ 1024
|
| 105 |
+
/ 1024
|
| 106 |
+
+ 0.4
|
| 107 |
+
)
|
| 108 |
+
)
|
| 109 |
+
if if_gpu_ok and len(gpu_infos) > 0:
|
| 110 |
+
gpu_info = "\n".join(gpu_infos)
|
| 111 |
+
default_batch_size = min(mem) // 2
|
| 112 |
+
else:
|
| 113 |
+
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
| 114 |
+
default_batch_size = 1
|
| 115 |
+
gpus = "-".join([i[0] for i in gpu_infos])
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
class ToolButton(gr.Button, gr.components.FormComponent):
|
| 119 |
+
"""Small button with single emoji as text, fits inside gradio forms"""
|
| 120 |
+
|
| 121 |
+
def __init__(self, **kwargs):
|
| 122 |
+
super().__init__(variant="tool", **kwargs)
|
| 123 |
+
|
| 124 |
+
def get_block_name(self):
|
| 125 |
+
return "button"
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
weight_root = os.getenv("weight_root")
|
| 129 |
+
weight_uvr5_root = os.getenv("weight_uvr5_root")
|
| 130 |
+
index_root = os.getenv("index_root")
|
| 131 |
+
|
| 132 |
+
names = []
|
| 133 |
+
for name in os.listdir(weight_root):
|
| 134 |
+
if name.endswith(".pth"):
|
| 135 |
+
names.append(name)
|
| 136 |
+
index_paths = []
|
| 137 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
| 138 |
+
for name in files:
|
| 139 |
+
if name.endswith(".index") and "trained" not in name:
|
| 140 |
+
index_paths.append("%s/%s" % (root, name))
|
| 141 |
+
uvr5_names = []
|
| 142 |
+
for name in os.listdir(weight_uvr5_root):
|
| 143 |
+
if name.endswith(".pth") or "onnx" in name:
|
| 144 |
+
uvr5_names.append(name.replace(".pth", ""))
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def change_choices():
|
| 148 |
+
names = []
|
| 149 |
+
for name in os.listdir(weight_root):
|
| 150 |
+
if name.endswith(".pth"):
|
| 151 |
+
names.append(name)
|
| 152 |
+
index_paths = []
|
| 153 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
| 154 |
+
for name in files:
|
| 155 |
+
if name.endswith(".index") and "trained" not in name:
|
| 156 |
+
index_paths.append("%s/%s" % (root, name))
|
| 157 |
+
audio_files=[]
|
| 158 |
+
for filename in os.listdir("./audios"):
|
| 159 |
+
if filename.endswith(('.wav','.mp3','.ogg')):
|
| 160 |
+
audio_files.append('./audios/'+filename)
|
| 161 |
+
return {"choices": sorted(names), "__type__": "update"}, {
|
| 162 |
+
"choices": sorted(index_paths),
|
| 163 |
+
"__type__": "update",
|
| 164 |
+
}, {"choices": sorted(audio_files), "__type__": "update"}
|
| 165 |
+
|
| 166 |
+
def clean():
|
| 167 |
+
return {"value": "", "__type__": "update"}
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def export_onnx():
|
| 171 |
+
from infer.modules.onnx.export import export_onnx as eo
|
| 172 |
+
|
| 173 |
+
eo()
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
sr_dict = {
|
| 177 |
+
"32k": 32000,
|
| 178 |
+
"40k": 40000,
|
| 179 |
+
"48k": 48000,
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def if_done(done, p):
|
| 184 |
+
while 1:
|
| 185 |
+
if p.poll() is None:
|
| 186 |
+
sleep(0.5)
|
| 187 |
+
else:
|
| 188 |
+
break
|
| 189 |
+
done[0] = True
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def if_done_multi(done, ps):
|
| 193 |
+
while 1:
|
| 194 |
+
# poll==None代表进程未结束
|
| 195 |
+
# 只要有一个进程未结束都不停
|
| 196 |
+
flag = 1
|
| 197 |
+
for p in ps:
|
| 198 |
+
if p.poll() is None:
|
| 199 |
+
flag = 0
|
| 200 |
+
sleep(0.5)
|
| 201 |
+
break
|
| 202 |
+
if flag == 1:
|
| 203 |
+
break
|
| 204 |
+
done[0] = True
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
| 208 |
+
sr = sr_dict[sr]
|
| 209 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
| 210 |
+
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
| 211 |
+
f.close()
|
| 212 |
+
per = 3.0 if config.is_half else 3.7
|
| 213 |
+
cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
|
| 214 |
+
config.python_cmd,
|
| 215 |
+
trainset_dir,
|
| 216 |
+
sr,
|
| 217 |
+
n_p,
|
| 218 |
+
now_dir,
|
| 219 |
+
exp_dir,
|
| 220 |
+
config.noparallel,
|
| 221 |
+
per,
|
| 222 |
+
)
|
| 223 |
+
logger.info(cmd)
|
| 224 |
+
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
| 225 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 226 |
+
done = [False]
|
| 227 |
+
threading.Thread(
|
| 228 |
+
target=if_done,
|
| 229 |
+
args=(
|
| 230 |
+
done,
|
| 231 |
+
p,
|
| 232 |
+
),
|
| 233 |
+
).start()
|
| 234 |
+
while 1:
|
| 235 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
| 236 |
+
yield (f.read())
|
| 237 |
+
sleep(1)
|
| 238 |
+
if done[0]:
|
| 239 |
+
break
|
| 240 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
| 241 |
+
log = f.read()
|
| 242 |
+
logger.info(log)
|
| 243 |
+
yield log
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
| 247 |
+
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
|
| 248 |
+
gpus = gpus.split("-")
|
| 249 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
| 250 |
+
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
| 251 |
+
f.close()
|
| 252 |
+
if if_f0:
|
| 253 |
+
if f0method != "rmvpe_gpu":
|
| 254 |
+
cmd = (
|
| 255 |
+
'"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
|
| 256 |
+
% (
|
| 257 |
+
config.python_cmd,
|
| 258 |
+
now_dir,
|
| 259 |
+
exp_dir,
|
| 260 |
+
n_p,
|
| 261 |
+
f0method,
|
| 262 |
+
)
|
| 263 |
+
)
|
| 264 |
+
logger.info(cmd)
|
| 265 |
+
p = Popen(
|
| 266 |
+
cmd, shell=True, cwd=now_dir
|
| 267 |
+
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
| 268 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 269 |
+
done = [False]
|
| 270 |
+
threading.Thread(
|
| 271 |
+
target=if_done,
|
| 272 |
+
args=(
|
| 273 |
+
done,
|
| 274 |
+
p,
|
| 275 |
+
),
|
| 276 |
+
).start()
|
| 277 |
+
else:
|
| 278 |
+
if gpus_rmvpe != "-":
|
| 279 |
+
gpus_rmvpe = gpus_rmvpe.split("-")
|
| 280 |
+
leng = len(gpus_rmvpe)
|
| 281 |
+
ps = []
|
| 282 |
+
for idx, n_g in enumerate(gpus_rmvpe):
|
| 283 |
+
cmd = (
|
| 284 |
+
'"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
|
| 285 |
+
% (
|
| 286 |
+
config.python_cmd,
|
| 287 |
+
leng,
|
| 288 |
+
idx,
|
| 289 |
+
n_g,
|
| 290 |
+
now_dir,
|
| 291 |
+
exp_dir,
|
| 292 |
+
config.is_half,
|
| 293 |
+
)
|
| 294 |
+
)
|
| 295 |
+
logger.info(cmd)
|
| 296 |
+
p = Popen(
|
| 297 |
+
cmd, shell=True, cwd=now_dir
|
| 298 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
| 299 |
+
ps.append(p)
|
| 300 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 301 |
+
done = [False]
|
| 302 |
+
threading.Thread(
|
| 303 |
+
target=if_done_multi, #
|
| 304 |
+
args=(
|
| 305 |
+
done,
|
| 306 |
+
ps,
|
| 307 |
+
),
|
| 308 |
+
).start()
|
| 309 |
+
else:
|
| 310 |
+
cmd = (
|
| 311 |
+
config.python_cmd
|
| 312 |
+
+ ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
|
| 313 |
+
% (
|
| 314 |
+
now_dir,
|
| 315 |
+
exp_dir,
|
| 316 |
+
)
|
| 317 |
+
)
|
| 318 |
+
logger.info(cmd)
|
| 319 |
+
p = Popen(
|
| 320 |
+
cmd, shell=True, cwd=now_dir
|
| 321 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
| 322 |
+
p.wait()
|
| 323 |
+
done = [True]
|
| 324 |
+
while 1:
|
| 325 |
+
with open(
|
| 326 |
+
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
| 327 |
+
) as f:
|
| 328 |
+
yield (f.read())
|
| 329 |
+
sleep(1)
|
| 330 |
+
if done[0]:
|
| 331 |
+
break
|
| 332 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
| 333 |
+
log = f.read()
|
| 334 |
+
logger.info(log)
|
| 335 |
+
yield log
|
| 336 |
+
####对不同part分别开多进程
|
| 337 |
+
"""
|
| 338 |
+
n_part=int(sys.argv[1])
|
| 339 |
+
i_part=int(sys.argv[2])
|
| 340 |
+
i_gpu=sys.argv[3]
|
| 341 |
+
exp_dir=sys.argv[4]
|
| 342 |
+
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
| 343 |
+
"""
|
| 344 |
+
leng = len(gpus)
|
| 345 |
+
ps = []
|
| 346 |
+
for idx, n_g in enumerate(gpus):
|
| 347 |
+
cmd = (
|
| 348 |
+
'"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s'
|
| 349 |
+
% (
|
| 350 |
+
config.python_cmd,
|
| 351 |
+
config.device,
|
| 352 |
+
leng,
|
| 353 |
+
idx,
|
| 354 |
+
n_g,
|
| 355 |
+
now_dir,
|
| 356 |
+
exp_dir,
|
| 357 |
+
version19,
|
| 358 |
+
)
|
| 359 |
+
)
|
| 360 |
+
logger.info(cmd)
|
| 361 |
+
p = Popen(
|
| 362 |
+
cmd, shell=True, cwd=now_dir
|
| 363 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
| 364 |
+
ps.append(p)
|
| 365 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
| 366 |
+
done = [False]
|
| 367 |
+
threading.Thread(
|
| 368 |
+
target=if_done_multi,
|
| 369 |
+
args=(
|
| 370 |
+
done,
|
| 371 |
+
ps,
|
| 372 |
+
),
|
| 373 |
+
).start()
|
| 374 |
+
while 1:
|
| 375 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
| 376 |
+
yield (f.read())
|
| 377 |
+
sleep(1)
|
| 378 |
+
if done[0]:
|
| 379 |
+
break
|
| 380 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
| 381 |
+
log = f.read()
|
| 382 |
+
logger.info(log)
|
| 383 |
+
yield log
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
def get_pretrained_models(path_str, f0_str, sr2):
|
| 387 |
+
if_pretrained_generator_exist = os.access(
|
| 388 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
| 389 |
+
)
|
| 390 |
+
if_pretrained_discriminator_exist = os.access(
|
| 391 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
| 392 |
+
)
|
| 393 |
+
if not if_pretrained_generator_exist:
|
| 394 |
+
logger.warn(
|
| 395 |
+
"assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
|
| 396 |
+
path_str,
|
| 397 |
+
f0_str,
|
| 398 |
+
sr2,
|
| 399 |
+
)
|
| 400 |
+
if not if_pretrained_discriminator_exist:
|
| 401 |
+
logger.warn(
|
| 402 |
+
"assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
|
| 403 |
+
path_str,
|
| 404 |
+
f0_str,
|
| 405 |
+
sr2,
|
| 406 |
+
)
|
| 407 |
+
return (
|
| 408 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
| 409 |
+
if if_pretrained_generator_exist
|
| 410 |
+
else "",
|
| 411 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
| 412 |
+
if if_pretrained_discriminator_exist
|
| 413 |
+
else "",
|
| 414 |
+
)
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
def change_sr2(sr2, if_f0_3, version19):
|
| 418 |
+
path_str = "" if version19 == "v1" else "_v2"
|
| 419 |
+
f0_str = "f0" if if_f0_3 else ""
|
| 420 |
+
return get_pretrained_models(path_str, f0_str, sr2)
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
def change_version19(sr2, if_f0_3, version19):
|
| 424 |
+
path_str = "" if version19 == "v1" else "_v2"
|
| 425 |
+
if sr2 == "32k" and version19 == "v1":
|
| 426 |
+
sr2 = "40k"
|
| 427 |
+
to_return_sr2 = (
|
| 428 |
+
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
|
| 429 |
+
if version19 == "v1"
|
| 430 |
+
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
|
| 431 |
+
)
|
| 432 |
+
f0_str = "f0" if if_f0_3 else ""
|
| 433 |
+
return (
|
| 434 |
+
*get_pretrained_models(path_str, f0_str, sr2),
|
| 435 |
+
to_return_sr2,
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
|
| 440 |
+
path_str = "" if version19 == "v1" else "_v2"
|
| 441 |
+
return (
|
| 442 |
+
{"visible": if_f0_3, "__type__": "update"},
|
| 443 |
+
*get_pretrained_models(path_str, "f0", sr2),
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
| 448 |
+
def click_train(
|
| 449 |
+
exp_dir1,
|
| 450 |
+
sr2,
|
| 451 |
+
if_f0_3,
|
| 452 |
+
spk_id5,
|
| 453 |
+
save_epoch10,
|
| 454 |
+
total_epoch11,
|
| 455 |
+
batch_size12,
|
| 456 |
+
if_save_latest13,
|
| 457 |
+
pretrained_G14,
|
| 458 |
+
pretrained_D15,
|
| 459 |
+
gpus16,
|
| 460 |
+
if_cache_gpu17,
|
| 461 |
+
if_save_every_weights18,
|
| 462 |
+
version19,
|
| 463 |
+
):
|
| 464 |
+
# 生成filelist
|
| 465 |
+
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
| 466 |
+
os.makedirs(exp_dir, exist_ok=True)
|
| 467 |
+
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
| 468 |
+
feature_dir = (
|
| 469 |
+
"%s/3_feature256" % (exp_dir)
|
| 470 |
+
if version19 == "v1"
|
| 471 |
+
else "%s/3_feature768" % (exp_dir)
|
| 472 |
+
)
|
| 473 |
+
if if_f0_3:
|
| 474 |
+
f0_dir = "%s/2a_f0" % (exp_dir)
|
| 475 |
+
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
| 476 |
+
names = (
|
| 477 |
+
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
| 478 |
+
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
| 479 |
+
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
| 480 |
+
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
| 481 |
+
)
|
| 482 |
+
else:
|
| 483 |
+
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
| 484 |
+
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
| 485 |
+
)
|
| 486 |
+
opt = []
|
| 487 |
+
for name in names:
|
| 488 |
+
if if_f0_3:
|
| 489 |
+
opt.append(
|
| 490 |
+
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
| 491 |
+
% (
|
| 492 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
| 493 |
+
name,
|
| 494 |
+
feature_dir.replace("\\", "\\\\"),
|
| 495 |
+
name,
|
| 496 |
+
f0_dir.replace("\\", "\\\\"),
|
| 497 |
+
name,
|
| 498 |
+
f0nsf_dir.replace("\\", "\\\\"),
|
| 499 |
+
name,
|
| 500 |
+
spk_id5,
|
| 501 |
+
)
|
| 502 |
+
)
|
| 503 |
+
else:
|
| 504 |
+
opt.append(
|
| 505 |
+
"%s/%s.wav|%s/%s.npy|%s"
|
| 506 |
+
% (
|
| 507 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
| 508 |
+
name,
|
| 509 |
+
feature_dir.replace("\\", "\\\\"),
|
| 510 |
+
name,
|
| 511 |
+
spk_id5,
|
| 512 |
+
)
|
| 513 |
+
)
|
| 514 |
+
fea_dim = 256 if version19 == "v1" else 768
|
| 515 |
+
if if_f0_3:
|
| 516 |
+
for _ in range(2):
|
| 517 |
+
opt.append(
|
| 518 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
| 519 |
+
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
| 520 |
+
)
|
| 521 |
+
else:
|
| 522 |
+
for _ in range(2):
|
| 523 |
+
opt.append(
|
| 524 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
| 525 |
+
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
| 526 |
+
)
|
| 527 |
+
shuffle(opt)
|
| 528 |
+
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
| 529 |
+
f.write("\n".join(opt))
|
| 530 |
+
logger.debug("Write filelist done")
|
| 531 |
+
# 生成config#无需生成config
|
| 532 |
+
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
| 533 |
+
logger.info("Use gpus: %s", str(gpus16))
|
| 534 |
+
if pretrained_G14 == "":
|
| 535 |
+
logger.info("No pretrained Generator")
|
| 536 |
+
if pretrained_D15 == "":
|
| 537 |
+
logger.info("No pretrained Discriminator")
|
| 538 |
+
if version19 == "v1" or sr2 == "40k":
|
| 539 |
+
config_path = "v1/%s.json" % sr2
|
| 540 |
+
else:
|
| 541 |
+
config_path = "v2/%s.json" % sr2
|
| 542 |
+
config_save_path = os.path.join(exp_dir, "config.json")
|
| 543 |
+
if not pathlib.Path(config_save_path).exists():
|
| 544 |
+
with open(config_save_path, "w", encoding="utf-8") as f:
|
| 545 |
+
json.dump(
|
| 546 |
+
config.json_config[config_path],
|
| 547 |
+
f,
|
| 548 |
+
ensure_ascii=False,
|
| 549 |
+
indent=4,
|
| 550 |
+
sort_keys=True,
|
| 551 |
+
)
|
| 552 |
+
f.write("\n")
|
| 553 |
+
if gpus16:
|
| 554 |
+
cmd = (
|
| 555 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
| 556 |
+
% (
|
| 557 |
+
config.python_cmd,
|
| 558 |
+
exp_dir1,
|
| 559 |
+
sr2,
|
| 560 |
+
1 if if_f0_3 else 0,
|
| 561 |
+
batch_size12,
|
| 562 |
+
gpus16,
|
| 563 |
+
total_epoch11,
|
| 564 |
+
save_epoch10,
|
| 565 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
| 566 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
| 567 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
| 568 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
| 569 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
| 570 |
+
version19,
|
| 571 |
+
)
|
| 572 |
+
)
|
| 573 |
+
else:
|
| 574 |
+
cmd = (
|
| 575 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
| 576 |
+
% (
|
| 577 |
+
config.python_cmd,
|
| 578 |
+
exp_dir1,
|
| 579 |
+
sr2,
|
| 580 |
+
1 if if_f0_3 else 0,
|
| 581 |
+
batch_size12,
|
| 582 |
+
total_epoch11,
|
| 583 |
+
save_epoch10,
|
| 584 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
| 585 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
| 586 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
| 587 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
| 588 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
| 589 |
+
version19,
|
| 590 |
+
)
|
| 591 |
+
)
|
| 592 |
+
logger.info(cmd)
|
| 593 |
+
p = Popen(cmd, shell=True, cwd=now_dir)
|
| 594 |
+
p.wait()
|
| 595 |
+
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
|
| 596 |
+
|
| 597 |
+
|
| 598 |
+
# but4.click(train_index, [exp_dir1], info3)
|
| 599 |
+
def train_index(exp_dir1, version19):
|
| 600 |
+
# exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
| 601 |
+
exp_dir = "logs/%s" % (exp_dir1)
|
| 602 |
+
os.makedirs(exp_dir, exist_ok=True)
|
| 603 |
+
feature_dir = (
|
| 604 |
+
"%s/3_feature256" % (exp_dir)
|
| 605 |
+
if version19 == "v1"
|
| 606 |
+
else "%s/3_feature768" % (exp_dir)
|
| 607 |
+
)
|
| 608 |
+
if not os.path.exists(feature_dir):
|
| 609 |
+
return "请先进行特征提取!"
|
| 610 |
+
listdir_res = list(os.listdir(feature_dir))
|
| 611 |
+
if len(listdir_res) == 0:
|
| 612 |
+
return "请先进行特征提取!"
|
| 613 |
+
infos = []
|
| 614 |
+
npys = []
|
| 615 |
+
for name in sorted(listdir_res):
|
| 616 |
+
phone = np.load("%s/%s" % (feature_dir, name))
|
| 617 |
+
npys.append(phone)
|
| 618 |
+
big_npy = np.concatenate(npys, 0)
|
| 619 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
| 620 |
+
np.random.shuffle(big_npy_idx)
|
| 621 |
+
big_npy = big_npy[big_npy_idx]
|
| 622 |
+
if big_npy.shape[0] > 2e5:
|
| 623 |
+
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
|
| 624 |
+
yield "\n".join(infos)
|
| 625 |
+
try:
|
| 626 |
+
big_npy = (
|
| 627 |
+
MiniBatchKMeans(
|
| 628 |
+
n_clusters=10000,
|
| 629 |
+
verbose=True,
|
| 630 |
+
batch_size=256 * config.n_cpu,
|
| 631 |
+
compute_labels=False,
|
| 632 |
+
init="random",
|
| 633 |
+
)
|
| 634 |
+
.fit(big_npy)
|
| 635 |
+
.cluster_centers_
|
| 636 |
+
)
|
| 637 |
+
except:
|
| 638 |
+
info = traceback.format_exc()
|
| 639 |
+
logger.info(info)
|
| 640 |
+
infos.append(info)
|
| 641 |
+
yield "\n".join(infos)
|
| 642 |
+
|
| 643 |
+
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
| 644 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
| 645 |
+
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
| 646 |
+
yield "\n".join(infos)
|
| 647 |
+
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
| 648 |
+
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
| 649 |
+
infos.append("training")
|
| 650 |
+
yield "\n".join(infos)
|
| 651 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
| 652 |
+
index_ivf.nprobe = 1
|
| 653 |
+
index.train(big_npy)
|
| 654 |
+
faiss.write_index(
|
| 655 |
+
index,
|
| 656 |
+
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 657 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
| 658 |
+
)
|
| 659 |
+
|
| 660 |
+
infos.append("adding")
|
| 661 |
+
yield "\n".join(infos)
|
| 662 |
+
batch_size_add = 8192
|
| 663 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
| 664 |
+
index.add(big_npy[i : i + batch_size_add])
|
| 665 |
+
faiss.write_index(
|
| 666 |
+
index,
|
| 667 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 668 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
| 669 |
+
)
|
| 670 |
+
infos.append(
|
| 671 |
+
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
| 672 |
+
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
| 673 |
+
)
|
| 674 |
+
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
| 675 |
+
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
| 676 |
+
yield "\n".join(infos)
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
| 680 |
+
def train1key(
|
| 681 |
+
exp_dir1,
|
| 682 |
+
sr2,
|
| 683 |
+
if_f0_3,
|
| 684 |
+
trainset_dir4,
|
| 685 |
+
spk_id5,
|
| 686 |
+
np7,
|
| 687 |
+
f0method8,
|
| 688 |
+
save_epoch10,
|
| 689 |
+
total_epoch11,
|
| 690 |
+
batch_size12,
|
| 691 |
+
if_save_latest13,
|
| 692 |
+
pretrained_G14,
|
| 693 |
+
pretrained_D15,
|
| 694 |
+
gpus16,
|
| 695 |
+
if_cache_gpu17,
|
| 696 |
+
if_save_every_weights18,
|
| 697 |
+
version19,
|
| 698 |
+
gpus_rmvpe,
|
| 699 |
+
):
|
| 700 |
+
infos = []
|
| 701 |
+
|
| 702 |
+
def get_info_str(strr):
|
| 703 |
+
infos.append(strr)
|
| 704 |
+
return "\n".join(infos)
|
| 705 |
+
|
| 706 |
+
####### step1:处理数据
|
| 707 |
+
yield get_info_str(i18n("step1:正在处理数据"))
|
| 708 |
+
[get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
|
| 709 |
+
|
| 710 |
+
####### step2a:提取音高
|
| 711 |
+
yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
|
| 712 |
+
[
|
| 713 |
+
get_info_str(_)
|
| 714 |
+
for _ in extract_f0_feature(
|
| 715 |
+
gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
|
| 716 |
+
)
|
| 717 |
+
]
|
| 718 |
+
|
| 719 |
+
####### step3a:训练模型
|
| 720 |
+
yield get_info_str(i18n("step3a:正在训练模型"))
|
| 721 |
+
click_train(
|
| 722 |
+
exp_dir1,
|
| 723 |
+
sr2,
|
| 724 |
+
if_f0_3,
|
| 725 |
+
spk_id5,
|
| 726 |
+
save_epoch10,
|
| 727 |
+
total_epoch11,
|
| 728 |
+
batch_size12,
|
| 729 |
+
if_save_latest13,
|
| 730 |
+
pretrained_G14,
|
| 731 |
+
pretrained_D15,
|
| 732 |
+
gpus16,
|
| 733 |
+
if_cache_gpu17,
|
| 734 |
+
if_save_every_weights18,
|
| 735 |
+
version19,
|
| 736 |
+
)
|
| 737 |
+
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
|
| 738 |
+
|
| 739 |
+
####### step3b:训练索引
|
| 740 |
+
[get_info_str(_) for _ in train_index(exp_dir1, version19)]
|
| 741 |
+
yield get_info_str(i18n("全流程结束!"))
|
| 742 |
+
|
| 743 |
+
|
| 744 |
+
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
| 745 |
+
def change_info_(ckpt_path):
|
| 746 |
+
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
|
| 747 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
| 748 |
+
try:
|
| 749 |
+
with open(
|
| 750 |
+
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
| 751 |
+
) as f:
|
| 752 |
+
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
| 753 |
+
sr, f0 = info["sample_rate"], info["if_f0"]
|
| 754 |
+
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
| 755 |
+
return sr, str(f0), version
|
| 756 |
+
except:
|
| 757 |
+
traceback.print_exc()
|
| 758 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
| 759 |
+
|
| 760 |
+
|
| 761 |
+
F0GPUVisible = config.dml == False
|
| 762 |
+
|
| 763 |
+
|
| 764 |
+
def change_f0_method(f0method8):
|
| 765 |
+
if f0method8 == "rmvpe_gpu":
|
| 766 |
+
visible = F0GPUVisible
|
| 767 |
+
else:
|
| 768 |
+
visible = False
|
| 769 |
+
return {"visible": visible, "__type__": "update"}
|
| 770 |
+
|
| 771 |
+
def find_model():
|
| 772 |
+
if len(names) > 0:
|
| 773 |
+
vc.get_vc(sorted(names)[0],None,None)
|
| 774 |
+
return sorted(names)[0]
|
| 775 |
+
else:
|
| 776 |
+
try:
|
| 777 |
+
gr.Info("Do not forget to choose a model.")
|
| 778 |
+
except:
|
| 779 |
+
pass
|
| 780 |
+
return ''
|
| 781 |
+
|
| 782 |
+
def find_audios(index=False):
|
| 783 |
+
audio_files=[]
|
| 784 |
+
if not os.path.exists('./audios'): os.mkdir("./audios")
|
| 785 |
+
for filename in os.listdir("./audios"):
|
| 786 |
+
if filename.endswith(('.wav','.mp3','.ogg')):
|
| 787 |
+
audio_files.append("./audios/"+filename)
|
| 788 |
+
if index:
|
| 789 |
+
if len(audio_files) > 0: return sorted(audio_files)[0]
|
| 790 |
+
else: return ""
|
| 791 |
+
elif len(audio_files) > 0: return sorted(audio_files)
|
| 792 |
+
else: return []
|
| 793 |
+
|
| 794 |
+
def get_index():
|
| 795 |
+
if find_model() != '':
|
| 796 |
+
chosen_model=sorted(names)[0].split(".")[0]
|
| 797 |
+
logs_path="./logs/"+chosen_model
|
| 798 |
+
if os.path.exists(logs_path):
|
| 799 |
+
for file in os.listdir(logs_path):
|
| 800 |
+
if file.endswith(".index"):
|
| 801 |
+
return os.path.join(logs_path, file)
|
| 802 |
+
return ''
|
| 803 |
+
else:
|
| 804 |
+
return ''
|
| 805 |
+
|
| 806 |
+
def get_indexes():
|
| 807 |
+
indexes_list=[]
|
| 808 |
+
for dirpath, dirnames, filenames in os.walk("./logs/"):
|
| 809 |
+
for filename in filenames:
|
| 810 |
+
if filename.endswith(".index"):
|
| 811 |
+
indexes_list.append(os.path.join(dirpath,filename))
|
| 812 |
+
if len(indexes_list) > 0:
|
| 813 |
+
return indexes_list
|
| 814 |
+
else:
|
| 815 |
+
return ''
|
| 816 |
+
|
| 817 |
+
def save_wav(file):
|
| 818 |
+
try:
|
| 819 |
+
file_path=file.name
|
| 820 |
+
shutil.move(file_path,'./audios')
|
| 821 |
+
return './audios/'+os.path.basename(file_path)
|
| 822 |
+
except AttributeError:
|
| 823 |
+
try:
|
| 824 |
+
new_name = 'kpop'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
|
| 825 |
+
new_path='./audios/'+new_name
|
| 826 |
+
shutil.move(file,new_path)
|
| 827 |
+
return new_path
|
| 828 |
+
except TypeError:
|
| 829 |
+
return None
|
| 830 |
+
|
| 831 |
+
def download_from_url(url, model):
|
| 832 |
+
if url == '':
|
| 833 |
+
return "URL cannot be left empty."
|
| 834 |
+
if model =='':
|
| 835 |
+
return "You need to name your model. With the model maker For example: Model-.nww's"
|
| 836 |
+
url = url.strip()
|
| 837 |
+
zip_dirs = ["zips", "unzips"]
|
| 838 |
+
for directory in zip_dirs:
|
| 839 |
+
if os.path.exists(directory):
|
| 840 |
+
shutil.rmtree(directory)
|
| 841 |
+
os.makedirs("zips", exist_ok=True)
|
| 842 |
+
os.makedirs("unzips", exist_ok=True)
|
| 843 |
+
zipfile = model + '.zip'
|
| 844 |
+
zipfile_path = './zips/' + zipfile
|
| 845 |
+
try:
|
| 846 |
+
if "drive.google.com" in url:
|
| 847 |
+
subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
|
| 848 |
+
elif "mega.nz" in url:
|
| 849 |
+
m = Mega()
|
| 850 |
+
m.download_url(url, './zips')
|
| 851 |
+
else:
|
| 852 |
+
subprocess.run(["wget", url, "-O", zipfile_path])
|
| 853 |
+
for filename in os.listdir("./zips"):
|
| 854 |
+
if filename.endswith(".zip"):
|
| 855 |
+
zipfile_path = os.path.join("./zips/",filename)
|
| 856 |
+
shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
|
| 857 |
+
else:
|
| 858 |
+
return "No zipfile found."
|
| 859 |
+
for root, dirs, files in os.walk('./unzips'):
|
| 860 |
+
for file in files:
|
| 861 |
+
file_path = os.path.join(root, file)
|
| 862 |
+
if file.endswith(".index"):
|
| 863 |
+
os.mkdir(f'./logs/{model}')
|
| 864 |
+
shutil.copy2(file_path,f'./logs/{model}')
|
| 865 |
+
elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
|
| 866 |
+
shutil.copy(file_path,f'./assets/weights/{model}.pth')
|
| 867 |
+
shutil.rmtree("zips")
|
| 868 |
+
shutil.rmtree("unzips")
|
| 869 |
+
return "Model Successfully Imported. (If you are using a google drive link it may not work even this said Success)"
|
| 870 |
+
except:
|
| 871 |
+
return "There's been an error. (Check your link again!) or or (it worked and this is a false error haha... help)"
|
| 872 |
+
|
| 873 |
+
def upload_to_dataset(files, dir):
|
| 874 |
+
if dir == '':
|
| 875 |
+
dir = './dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
| 876 |
+
if not os.path.exists(dir):
|
| 877 |
+
os.makedirs(dir)
|
| 878 |
+
for file in files:
|
| 879 |
+
path=file.name
|
| 880 |
+
shutil.copy2(path,dir)
|
| 881 |
+
try:
|
| 882 |
+
gr.Info(i18n("处理数据"))
|
| 883 |
+
except:
|
| 884 |
+
pass
|
| 885 |
+
return i18n("处理数据"), {"value":dir,"__type__":"update"}
|
| 886 |
+
|
| 887 |
+
def download_model_files(model):
|
| 888 |
+
model_found = False
|
| 889 |
+
index_found = False
|
| 890 |
+
if os.path.exists(f'./assets/weights/{model}.pth'): model_found = True
|
| 891 |
+
if os.path.exists(f'./logs/{model}'):
|
| 892 |
+
for file in os.listdir(f'./logs/{model}'):
|
| 893 |
+
if file.endswith('.index') and 'added' in file:
|
| 894 |
+
log_file = file
|
| 895 |
+
index_found = True
|
| 896 |
+
if model_found and index_found:
|
| 897 |
+
return [f'./assets/weights/{model}.pth', f'./logs/{model}/{log_file}'], "Done"
|
| 898 |
+
elif model_found and not index_found:
|
| 899 |
+
return f'./assets/weights/{model}.pth', "Could not find Index file."
|
| 900 |
+
elif index_found and not model_found:
|
| 901 |
+
return f'./logs/{model}/{log_file}', f'Make sure the Voice Name is correct. I could not find {model}.pth'
|
| 902 |
+
else:
|
| 903 |
+
return None, f'Could not find {model}.pth or corresponding Index file.'
|
| 904 |
+
|
| 905 |
+
with gr.Blocks(title="KPOPEASYGUI 🔊",theme=gr.themes.Base(primary_hue="rose", secondary_hue="pink", neutral_hue="slate")) as app:
|
| 906 |
+
with gr.Row():
|
| 907 |
+
gr.HTML("<img src='file/lp.gif' alt='image/gif'>")
|
| 908 |
+
with gr.Tabs():
|
| 909 |
+
with gr.TabItem(i18n("模型推理")):
|
| 910 |
+
with gr.Row():
|
| 911 |
+
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names), value=find_model())
|
| 912 |
+
refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary")
|
| 913 |
+
#clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
|
| 914 |
+
spk_item = gr.Slider(
|
| 915 |
+
minimum=0,
|
| 916 |
+
maximum=2333,
|
| 917 |
+
step=1,
|
| 918 |
+
label=i18n("请选择说话人id"),
|
| 919 |
+
value=0,
|
| 920 |
+
visible=False,
|
| 921 |
+
interactive=True,
|
| 922 |
+
)
|
| 923 |
+
#clean_button.click(
|
| 924 |
+
# fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
|
| 925 |
+
#)
|
| 926 |
+
vc_transform0 = gr.Number(
|
| 927 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
| 928 |
+
)
|
| 929 |
+
but0 = gr.Button(i18n("转换"), variant="primary")
|
| 930 |
+
with gr.Row():
|
| 931 |
+
with gr.Column():
|
| 932 |
+
with gr.Row():
|
| 933 |
+
dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
|
| 934 |
+
with gr.Row():
|
| 935 |
+
record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
|
| 936 |
+
with gr.Row():
|
| 937 |
+
input_audio0 = gr.Dropdown(
|
| 938 |
+
label=i18n("输入待处理音频文件路径(默认是正确格式示例)"),
|
| 939 |
+
value=find_audios(True),
|
| 940 |
+
choices=find_audios()
|
| 941 |
+
)
|
| 942 |
+
record_button.change(fn=save_wav, inputs=[record_button], outputs=[input_audio0])
|
| 943 |
+
dropbox.upload(fn=save_wav, inputs=[dropbox], outputs=[input_audio0])
|
| 944 |
+
with gr.Column():
|
| 945 |
+
with gr.Accordion(label=i18n("自动检测index路径,下拉式选择(dropdown)"), open=False):
|
| 946 |
+
file_index2 = gr.Dropdown(
|
| 947 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
| 948 |
+
choices=get_indexes(),
|
| 949 |
+
interactive=True,
|
| 950 |
+
value=get_index()
|
| 951 |
+
)
|
| 952 |
+
index_rate1 = gr.Slider(
|
| 953 |
+
minimum=0,
|
| 954 |
+
maximum=1,
|
| 955 |
+
label=i18n("检索特征占比"),
|
| 956 |
+
value=0.80,
|
| 957 |
+
interactive=True,
|
| 958 |
+
)
|
| 959 |
+
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
|
| 960 |
+
with gr.Accordion(label=i18n("常规设置"), open=False):
|
| 961 |
+
f0method0 = gr.Radio(
|
| 962 |
+
label=i18n(
|
| 963 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
| 964 |
+
),
|
| 965 |
+
choices=["pm", "harvest", "crepe", "rmvpe"]
|
| 966 |
+
if config.dml == False
|
| 967 |
+
else ["pm", "harvest", "rmvpe"],
|
| 968 |
+
value="rmvpe",
|
| 969 |
+
interactive=True,
|
| 970 |
+
)
|
| 971 |
+
filter_radius0 = gr.Slider(
|
| 972 |
+
minimum=0,
|
| 973 |
+
maximum=7,
|
| 974 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
| 975 |
+
value=3,
|
| 976 |
+
step=1,
|
| 977 |
+
interactive=True,
|
| 978 |
+
)
|
| 979 |
+
resample_sr0 = gr.Slider(
|
| 980 |
+
minimum=0,
|
| 981 |
+
maximum=48000,
|
| 982 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
| 983 |
+
value=0,
|
| 984 |
+
step=1,
|
| 985 |
+
interactive=True,
|
| 986 |
+
visible=False
|
| 987 |
+
)
|
| 988 |
+
rms_mix_rate0 = gr.Slider(
|
| 989 |
+
minimum=0,
|
| 990 |
+
maximum=1,
|
| 991 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
| 992 |
+
value=0.21,
|
| 993 |
+
interactive=True,
|
| 994 |
+
)
|
| 995 |
+
protect0 = gr.Slider(
|
| 996 |
+
minimum=0,
|
| 997 |
+
maximum=0.5,
|
| 998 |
+
label=i18n(
|
| 999 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
| 1000 |
+
),
|
| 1001 |
+
value=0.28,
|
| 1002 |
+
step=0.01,
|
| 1003 |
+
interactive=True,
|
| 1004 |
+
)
|
| 1005 |
+
file_index1 = gr.Textbox(
|
| 1006 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
| 1007 |
+
value="",
|
| 1008 |
+
interactive=True,
|
| 1009 |
+
visible=False
|
| 1010 |
+
)
|
| 1011 |
+
refresh_button.click(
|
| 1012 |
+
fn=change_choices,
|
| 1013 |
+
inputs=[],
|
| 1014 |
+
outputs=[sid0, file_index2, input_audio0],
|
| 1015 |
+
api_name="infer_refresh",
|
| 1016 |
+
)
|
| 1017 |
+
# file_big_npy1 = gr.Textbox(
|
| 1018 |
+
# label=i18n("特征文件路径"),
|
| 1019 |
+
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
| 1020 |
+
# interactive=True,
|
| 1021 |
+
# )
|
| 1022 |
+
with gr.Row():
|
| 1023 |
+
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False)
|
| 1024 |
+
with gr.Row():
|
| 1025 |
+
vc_output1 = gr.Textbox(label=i18n("输出信息"))
|
| 1026 |
+
but0.click(
|
| 1027 |
+
vc.vc_single,
|
| 1028 |
+
[
|
| 1029 |
+
spk_item,
|
| 1030 |
+
input_audio0,
|
| 1031 |
+
vc_transform0,
|
| 1032 |
+
f0_file,
|
| 1033 |
+
f0method0,
|
| 1034 |
+
file_index1,
|
| 1035 |
+
file_index2,
|
| 1036 |
+
# file_big_npy1,
|
| 1037 |
+
index_rate1,
|
| 1038 |
+
filter_radius0,
|
| 1039 |
+
resample_sr0,
|
| 1040 |
+
rms_mix_rate0,
|
| 1041 |
+
protect0,
|
| 1042 |
+
],
|
| 1043 |
+
[vc_output1, vc_output2],
|
| 1044 |
+
api_name="infer_convert",
|
| 1045 |
+
)
|
| 1046 |
+
with gr.Row():
|
| 1047 |
+
with gr.Accordion(open=False, label=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")):
|
| 1048 |
+
with gr.Row():
|
| 1049 |
+
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
|
| 1050 |
+
vc_transform1 = gr.Number(
|
| 1051 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
| 1052 |
+
)
|
| 1053 |
+
f0method1 = gr.Radio(
|
| 1054 |
+
label=i18n(
|
| 1055 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
| 1056 |
+
),
|
| 1057 |
+
choices=["pm", "harvest", "crepe", "rmvpe"]
|
| 1058 |
+
if config.dml == False
|
| 1059 |
+
else ["pm", "harvest", "rmvpe"],
|
| 1060 |
+
value="pm",
|
| 1061 |
+
interactive=True,
|
| 1062 |
+
)
|
| 1063 |
+
with gr.Row():
|
| 1064 |
+
filter_radius1 = gr.Slider(
|
| 1065 |
+
minimum=0,
|
| 1066 |
+
maximum=7,
|
| 1067 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
| 1068 |
+
value=3,
|
| 1069 |
+
step=1,
|
| 1070 |
+
interactive=True,
|
| 1071 |
+
visible=False
|
| 1072 |
+
)
|
| 1073 |
+
with gr.Row():
|
| 1074 |
+
file_index3 = gr.Textbox(
|
| 1075 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
| 1076 |
+
value="",
|
| 1077 |
+
interactive=True,
|
| 1078 |
+
visible=False
|
| 1079 |
+
)
|
| 1080 |
+
file_index4 = gr.Dropdown(
|
| 1081 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
| 1082 |
+
choices=sorted(index_paths),
|
| 1083 |
+
interactive=True,
|
| 1084 |
+
visible=False
|
| 1085 |
+
)
|
| 1086 |
+
refresh_button.click(
|
| 1087 |
+
fn=lambda: change_choices()[1],
|
| 1088 |
+
inputs=[],
|
| 1089 |
+
outputs=file_index4,
|
| 1090 |
+
api_name="infer_refresh_batch",
|
| 1091 |
+
)
|
| 1092 |
+
# file_big_npy2 = gr.Textbox(
|
| 1093 |
+
# label=i18n("特征文件路径"),
|
| 1094 |
+
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
| 1095 |
+
# interactive=True,
|
| 1096 |
+
# )
|
| 1097 |
+
index_rate2 = gr.Slider(
|
| 1098 |
+
minimum=0,
|
| 1099 |
+
maximum=1,
|
| 1100 |
+
label=i18n("检索特征占比"),
|
| 1101 |
+
value=1,
|
| 1102 |
+
interactive=True,
|
| 1103 |
+
visible=False
|
| 1104 |
+
)
|
| 1105 |
+
with gr.Row():
|
| 1106 |
+
resample_sr1 = gr.Slider(
|
| 1107 |
+
minimum=0,
|
| 1108 |
+
maximum=48000,
|
| 1109 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
| 1110 |
+
value=0,
|
| 1111 |
+
step=1,
|
| 1112 |
+
interactive=True,
|
| 1113 |
+
visible=False
|
| 1114 |
+
)
|
| 1115 |
+
rms_mix_rate1 = gr.Slider(
|
| 1116 |
+
minimum=0,
|
| 1117 |
+
maximum=1,
|
| 1118 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
| 1119 |
+
value=0.21,
|
| 1120 |
+
interactive=True,
|
| 1121 |
+
)
|
| 1122 |
+
protect1 = gr.Slider(
|
| 1123 |
+
minimum=0,
|
| 1124 |
+
maximum=0.5,
|
| 1125 |
+
label=i18n(
|
| 1126 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
| 1127 |
+
),
|
| 1128 |
+
value=0.28,
|
| 1129 |
+
step=0.01,
|
| 1130 |
+
interactive=True,
|
| 1131 |
+
)
|
| 1132 |
+
with gr.Row():
|
| 1133 |
+
dir_input = gr.Textbox(
|
| 1134 |
+
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
|
| 1135 |
+
value="./audios",
|
| 1136 |
+
)
|
| 1137 |
+
inputs = gr.File(
|
| 1138 |
+
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
| 1139 |
+
)
|
| 1140 |
+
with gr.Row():
|
| 1141 |
+
format1 = gr.Radio(
|
| 1142 |
+
label=i18n("导出文件格式"),
|
| 1143 |
+
choices=["wav", "flac", "mp3", "m4a"],
|
| 1144 |
+
value="wav",
|
| 1145 |
+
interactive=True,
|
| 1146 |
+
)
|
| 1147 |
+
but1 = gr.Button(i18n("转换"), variant="primary")
|
| 1148 |
+
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
| 1149 |
+
but1.click(
|
| 1150 |
+
vc.vc_multi,
|
| 1151 |
+
[
|
| 1152 |
+
spk_item,
|
| 1153 |
+
dir_input,
|
| 1154 |
+
opt_input,
|
| 1155 |
+
inputs,
|
| 1156 |
+
vc_transform1,
|
| 1157 |
+
f0method1,
|
| 1158 |
+
file_index1,
|
| 1159 |
+
file_index2,
|
| 1160 |
+
# file_big_npy2,
|
| 1161 |
+
index_rate1,
|
| 1162 |
+
filter_radius1,
|
| 1163 |
+
resample_sr1,
|
| 1164 |
+
rms_mix_rate1,
|
| 1165 |
+
protect1,
|
| 1166 |
+
format1,
|
| 1167 |
+
],
|
| 1168 |
+
[vc_output3],
|
| 1169 |
+
api_name="infer_convert_batch",
|
| 1170 |
+
)
|
| 1171 |
+
sid0.change(
|
| 1172 |
+
fn=vc.get_vc,
|
| 1173 |
+
inputs=[sid0, protect0, protect1],
|
| 1174 |
+
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
|
| 1175 |
+
)
|
| 1176 |
+
with gr.TabItem("Download Model"):
|
| 1177 |
+
with gr.Row():
|
| 1178 |
+
gr.Markdown(
|
| 1179 |
+
"""
|
| 1180 |
+
⚠️ Google Drive Links, and some leelo models will not work with this gradio ⚠️
|
| 1181 |
+
"""
|
| 1182 |
+
)
|
| 1183 |
+
with gr.Row():
|
| 1184 |
+
url=gr.Textbox(label="Enter the URL to the Model:")
|
| 1185 |
+
with gr.Row():
|
| 1186 |
+
model = gr.Textbox(label="Name your model (with model maker name!!!):")
|
| 1187 |
+
_button=gr.Button("")
|
| 1188 |
+
with gr.Row():
|
| 1189 |
+
status_bar=gr.Textbox(label="")
|
| 1190 |
+
_button.click(fn=_from_url, inputs=[url, model], outputs=[status_bar])
|
| 1191 |
+
with gr.Row():
|
| 1192 |
+
gr.Markdown(
|
| 1193 |
+
"""
|
| 1194 |
+
❤️ Support Original Creator from this easyGUI ❤️
|
| 1195 |
+
paypal.me/lesantillan
|
| 1196 |
+
"""
|
| 1197 |
+
)
|
| 1198 |
+
|
| 1199 |
+
with gr.TabItem("Training"):
|
| 1200 |
+
with gr.Row():
|
| 1201 |
+
gr.Markdown(
|
| 1202 |
+
"""
|
| 1203 |
+
⚠️ HAHAH YOU THOUGHT I ADDED TRAINING??? NO OFC DUH ⚠️
|
| 1204 |
+
"""
|
| 1205 |
+
)
|
| 1206 |
+
|
| 1207 |
+
if config.iscolab:
|
| 1208 |
+
app.queue(concurrency_count=511, max_size=1022).launch(share=True),
|
| 1209 |
+
favicon_path="./TW.png",
|
| 1210 |
+
else:
|
| 1211 |
+
app.queue(concurrency_count=511, max_size=1022).launch(
|
| 1212 |
+
server_name="0.0.0.0",
|
| 1213 |
+
favicon_path="./TW.png",
|
| 1214 |
+
inbrowser=not config.noautoopen,
|
| 1215 |
+
server_port=config.listen_port,
|
| 1216 |
+
quiet=True,
|
| 1217 |
+
)
|