Spaces:
Sleeping
Sleeping
File size: 8,403 Bytes
e8434f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import os
import secrets
import hashlib
from typing import Optional, Dict, Any
from datetime import datetime, timedelta
import logging
from fastapi import FastAPI, HTTPException, Depends, Security, status
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import uvicorn
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="LLM AI Agent API",
description="Secure AI Agent API with Local LLM deployment",
version="1.0.0",
docs_url="/docs",
redoc_url="/redoc"
)
# CORS middleware for cross-origin requests
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure this for production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Security
security = HTTPBearer()
# Configuration
class Config:
# API Keys - In production, use environment variables
API_KEYS = {
os.getenv("API_KEY_1", "your-secure-api-key-1"): "user1",
os.getenv("API_KEY_2", "your-secure-api-key-2"): "user2",
# Add more API keys as needed
}
# Model configuration
MODEL_NAME = os.getenv("MODEL_NAME", "microsoft/DialoGPT-medium") # Lightweight model for free tier
MAX_LENGTH = int(os.getenv("MAX_LENGTH", "512"))
TEMPERATURE = float(os.getenv("TEMPERATURE", "0.7"))
TOP_P = float(os.getenv("TOP_P", "0.9"))
# Rate limiting (requests per minute per API key)
RATE_LIMIT = int(os.getenv("RATE_LIMIT", "10"))
# Global variables for model and tokenizer
model = None
tokenizer = None
text_generator = None
# Request/Response models
class ChatRequest(BaseModel):
message: str = Field(..., min_length=1, max_length=1000, description="Input message for the AI agent")
max_length: Optional[int] = Field(None, ge=10, le=2048, description="Maximum response length")
temperature: Optional[float] = Field(None, ge=0.1, le=2.0, description="Response creativity (0.1-2.0)")
system_prompt: Optional[str] = Field(None, max_length=500, description="Optional system prompt")
class ChatResponse(BaseModel):
response: str
model_used: str
timestamp: str
tokens_used: int
processing_time: float
class HealthResponse(BaseModel):
status: str
model_loaded: bool
timestamp: str
version: str
# Rate limiting storage (in production, use Redis)
request_counts: Dict[str, Dict[str, int]] = {}
def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security)) -> str:
"""Verify API key authentication"""
api_key = credentials.credentials
if api_key not in Config.API_KEYS:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key",
headers={"WWW-Authenticate": "Bearer"},
)
return Config.API_KEYS[api_key]
def check_rate_limit(api_key: str) -> bool:
"""Simple rate limiting implementation"""
current_minute = datetime.now().strftime("%Y-%m-%d-%H-%M")
if api_key not in request_counts:
request_counts[api_key] = {}
if current_minute not in request_counts[api_key]:
request_counts[api_key][current_minute] = 0
if request_counts[api_key][current_minute] >= Config.RATE_LIMIT:
return False
request_counts[api_key][current_minute] += 1
return True
@app.on_event("startup")
async def load_model():
"""Load the LLM model on startup"""
global model, tokenizer, text_generator
try:
logger.info(f"Loading model: {Config.MODEL_NAME}")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(Config.MODEL_NAME)
# Add padding token if it doesn't exist
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Load model with optimizations for free tier
model = AutoModelForCausalLM.from_pretrained(
Config.MODEL_NAME,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
low_cpu_mem_usage=True
)
# Create text generation pipeline
text_generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=0 if torch.cuda.is_available() else -1
)
logger.info("Model loaded successfully!")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise e
@app.get("/", response_model=HealthResponse)
async def root():
"""Health check endpoint"""
return HealthResponse(
status="healthy",
model_loaded=model is not None,
timestamp=datetime.now().isoformat(),
version="1.0.0"
)
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Detailed health check"""
return HealthResponse(
status="healthy" if model is not None else "model_not_loaded",
model_loaded=model is not None,
timestamp=datetime.now().isoformat(),
version="1.0.0"
)
@app.post("/chat", response_model=ChatResponse)
async def chat(
request: ChatRequest,
user: str = Depends(verify_api_key)
):
"""Main chat endpoint for AI agent interaction"""
start_time = datetime.now()
# Check rate limiting
api_key = None # In a real implementation, you'd extract this from the token
# if not check_rate_limit(api_key):
# raise HTTPException(
# status_code=status.HTTP_429_TOO_MANY_REQUESTS,
# detail="Rate limit exceeded. Please try again later."
# )
if model is None or tokenizer is None:
raise HTTPException(
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
detail="Model not loaded. Please try again later."
)
try:
# Prepare input
input_text = request.message
if request.system_prompt:
input_text = f"System: {request.system_prompt}\nUser: {request.message}\nAssistant:"
# Generate response
max_length = request.max_length or Config.MAX_LENGTH
temperature = request.temperature or Config.TEMPERATURE
# Generate text
generated = text_generator(
input_text,
max_length=max_length,
temperature=temperature,
top_p=Config.TOP_P,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=1,
truncation=True
)
# Extract response
response_text = generated[0]['generated_text']
if input_text in response_text:
response_text = response_text.replace(input_text, "").strip()
# Calculate processing time
processing_time = (datetime.now() - start_time).total_seconds()
# Count tokens (approximate)
tokens_used = len(tokenizer.encode(response_text))
return ChatResponse(
response=response_text,
model_used=Config.MODEL_NAME,
timestamp=datetime.now().isoformat(),
tokens_used=tokens_used,
processing_time=processing_time
)
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error generating response: {str(e)}"
)
@app.get("/models")
async def get_model_info(user: str = Depends(verify_api_key)):
"""Get information about the loaded model"""
return {
"model_name": Config.MODEL_NAME,
"model_loaded": model is not None,
"max_length": Config.MAX_LENGTH,
"temperature": Config.TEMPERATURE,
"device": "cuda" if torch.cuda.is_available() else "cpu"
}
if __name__ == "__main__":
# For local development
uvicorn.run(
"app:app",
host="0.0.0.0",
port=int(os.getenv("PORT", "7860")), # Hugging Face Spaces uses port 7860
reload=False
)
|