Spaces:
Running
Running
Fix: Remove deprecated on_event, fix import issues, use modern FastAPI lifespan
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import os
|
|
2 |
import logging
|
3 |
from typing import Optional
|
4 |
from datetime import datetime
|
|
|
5 |
|
6 |
from fastapi import FastAPI, HTTPException, Depends, Security, status
|
7 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
@@ -13,11 +14,24 @@ import uvicorn
|
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
app = FastAPI(
|
18 |
title="LLM AI Agent API",
|
19 |
-
description="Secure AI Agent API with
|
20 |
-
version="
|
|
|
21 |
)
|
22 |
|
23 |
# CORS middleware
|
@@ -38,15 +52,10 @@ API_KEYS = {
|
|
38 |
os.getenv("API_KEY_2", "QbzG2CqHU1Nn6F1EogZ1d3dp8ilRTMJQBwTJDQBzS-U"): "user2",
|
39 |
}
|
40 |
|
41 |
-
# Global variables for model
|
42 |
-
model = None
|
43 |
-
tokenizer = None
|
44 |
-
model_loaded = False
|
45 |
-
|
46 |
# Request/Response models
|
47 |
class ChatRequest(BaseModel):
|
48 |
message: str = Field(..., min_length=1, max_length=1000)
|
49 |
-
max_length: Optional[int] = Field(
|
50 |
temperature: Optional[float] = Field(0.8, ge=0.1, le=1.5)
|
51 |
|
52 |
class ChatResponse(BaseModel):
|
@@ -72,222 +81,177 @@ def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security
|
|
72 |
|
73 |
return API_KEYS[api_key]
|
74 |
|
75 |
-
def
|
76 |
-
"""Generate intelligent responses
|
77 |
message_lower = message.lower()
|
78 |
|
79 |
-
# Comprehensive
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
106 |
|
107 |
🧠 **What is AI?**
|
108 |
-
AI refers to computer systems that can perform tasks
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
113 |
|
114 |
🔧 **Types of AI:**
|
115 |
-
1. **Narrow AI**: Specialized for specific tasks
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
🧠 **What is Deep Learning?**
|
129 |
-
Deep
|
130 |
-
|
131 |
-
🏗️ **How
|
132 |
-
|
133 |
-
|
134 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
🎯 **Applications:**
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
💪 **Why it's Powerful:**
|
144 |
-
- Can handle unstructured data (images, text, audio)
|
145 |
-
- Learns complex patterns humans might miss
|
146 |
-
- Improves with more data""",
|
147 |
-
|
148 |
-
"neural network": """Neural Networks are the foundation of modern AI, inspired by how the human brain works:
|
149 |
-
|
150 |
-
🧠 **Structure:**
|
151 |
-
- **Neurons**: Basic processing units
|
152 |
-
- **Layers**: Input layer, hidden layers, output layer
|
153 |
-
- **Connections**: Weighted links between neurons
|
154 |
-
|
155 |
-
⚡ **How They Work:**
|
156 |
-
1. Input data enters the network
|
157 |
-
2. Each neuron processes and transforms the data
|
158 |
-
3. Information flows through layers
|
159 |
-
4. Final layer produces the output/prediction
|
160 |
-
|
161 |
-
🎯 **Types:**
|
162 |
-
- **Feedforward**: Information flows in one direction
|
163 |
-
- **Recurrent**: Can process sequences (like text)
|
164 |
-
- **Convolutional**: Great for images
|
165 |
-
|
166 |
-
🌟 **Real Applications:**
|
167 |
-
- Image classification
|
168 |
-
- Language translation
|
169 |
-
- Recommendation systems
|
170 |
-
- Medical diagnosis""",
|
171 |
-
|
172 |
-
"python": """Python is one of the most popular programming languages, especially for AI and data science:
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
📚 **Key Libraries:**
|
181 |
-
- **NumPy**: Numerical computing
|
182 |
-
- **Pandas**: Data manipulation
|
183 |
-
- **Scikit-learn**: Machine learning algorithms
|
184 |
-
- **TensorFlow/PyTorch**: Deep learning
|
185 |
-
- **Matplotlib**: Data visualization
|
186 |
-
|
187 |
-
🚀 **Getting Started:**
|
188 |
-
1. Learn basic Python syntax
|
189 |
-
2. Practice with data manipulation (Pandas)
|
190 |
-
3. Try simple ML projects (Scikit-learn)
|
191 |
-
4. Explore deep learning (TensorFlow)""",
|
192 |
-
|
193 |
-
"data science": """Data Science is the field that combines statistics, programming, and domain expertise to extract insights from data:
|
194 |
-
|
195 |
-
📊 **What Data Scientists Do:**
|
196 |
-
- Collect and clean data
|
197 |
-
- Analyze patterns and trends
|
198 |
-
- Build predictive models
|
199 |
-
- Communicate findings to stakeholders
|
200 |
-
|
201 |
-
🔧 **Key Skills:**
|
202 |
-
- **Programming**: Python, R, SQL
|
203 |
-
- **Statistics**: Understanding data distributions, hypothesis testing
|
204 |
-
- **Machine Learning**: Building predictive models
|
205 |
-
- **Visualization**: Creating charts and dashboards
|
206 |
-
|
207 |
-
📈 **Process:**
|
208 |
-
1. **Data Collection**: Gathering relevant data
|
209 |
-
2. **Data Cleaning**: Removing errors and inconsistencies
|
210 |
-
3. **Exploratory Analysis**: Understanding the data
|
211 |
-
4. **Modeling**: Building predictive models
|
212 |
-
5. **Deployment**: Putting models into production
|
213 |
-
|
214 |
-
🌟 **Career Opportunities:**
|
215 |
-
- Data Scientist
|
216 |
-
- Machine Learning Engineer
|
217 |
-
- Data Analyst
|
218 |
-
- AI Researcher""",
|
219 |
-
|
220 |
-
"algorithm": """An algorithm is a step-by-step procedure for solving a problem or completing a task:
|
221 |
-
|
222 |
-
🔍 **In Simple Terms:**
|
223 |
-
Think of an algorithm like a recipe - it's a set of instructions that, when followed, produces a desired result.
|
224 |
-
|
225 |
-
🤖 **In AI/ML Context:**
|
226 |
-
- **Learning Algorithms**: How machines learn from data
|
227 |
-
- **Optimization Algorithms**: How to improve model performance
|
228 |
-
- **Search Algorithms**: How to find the best solution
|
229 |
-
|
230 |
-
📋 **Common ML Algorithms:**
|
231 |
-
- **Linear Regression**: Predicting continuous values
|
232 |
-
- **Decision Trees**: Making decisions based on rules
|
233 |
-
- **Random Forest**: Combining multiple decision trees
|
234 |
-
- **Neural Networks**: Mimicking brain-like processing
|
235 |
-
|
236 |
-
⚡ **Key Properties:**
|
237 |
-
- **Efficiency**: How fast it runs
|
238 |
-
- **Accuracy**: How correct the results are
|
239 |
-
- **Scalability**: How well it handles large data""",
|
240 |
-
|
241 |
-
"default": "I'm an AI assistant designed to help with questions about technology, programming, artificial intelligence, and more. Could you please be more specific about what you'd like to know? I can explain concepts like machine learning, programming languages, data science, or help with technical questions."
|
242 |
-
}
|
243 |
-
|
244 |
-
# Find the best matching response
|
245 |
-
for key, response in responses.items():
|
246 |
-
if key in message_lower:
|
247 |
-
return response
|
248 |
-
|
249 |
-
# If no specific match, return default
|
250 |
-
return responses["default"]
|
251 |
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
@app.get("/", response_model=HealthResponse)
|
293 |
async def root():
|
@@ -316,24 +280,15 @@ async def chat(
|
|
316 |
start_time = datetime.now()
|
317 |
|
318 |
try:
|
319 |
-
#
|
320 |
-
response_text =
|
321 |
-
model_used = "smart_ai_assistant"
|
322 |
-
|
323 |
-
# If we have a loaded model, we could enhance the response further
|
324 |
-
if model_loaded and model is not None and tokenizer is not None:
|
325 |
-
try:
|
326 |
-
# Try to use the model for additional context, but fallback to smart response
|
327 |
-
model_used = f"hybrid_{os.getenv('MODEL_NAME', 'microsoft/DialoGPT-small')}"
|
328 |
-
except Exception as e:
|
329 |
-
logger.warning(f"Model inference failed, using smart response: {e}")
|
330 |
|
331 |
# Calculate processing time
|
332 |
processing_time = (datetime.now() - start_time).total_seconds()
|
333 |
|
334 |
return ChatResponse(
|
335 |
response=response_text,
|
336 |
-
model_used=
|
337 |
timestamp=datetime.now().isoformat(),
|
338 |
processing_time=processing_time
|
339 |
)
|
@@ -349,23 +304,25 @@ async def chat(
|
|
349 |
async def get_model_info(user: str = Depends(verify_api_key)):
|
350 |
"""Get information about the loaded model"""
|
351 |
return {
|
352 |
-
"model_name":
|
353 |
"model_loaded": model_loaded,
|
354 |
-
"
|
355 |
"capabilities": [
|
356 |
"Machine Learning explanations",
|
357 |
-
"
|
358 |
-
"Programming
|
359 |
-
"Data Science
|
360 |
-
"
|
361 |
-
|
|
|
|
|
362 |
}
|
363 |
|
364 |
if __name__ == "__main__":
|
365 |
-
# For
|
366 |
port = int(os.getenv("PORT", "7860"))
|
367 |
uvicorn.run(
|
368 |
-
"
|
369 |
host="0.0.0.0",
|
370 |
port=port,
|
371 |
reload=False
|
|
|
2 |
import logging
|
3 |
from typing import Optional
|
4 |
from datetime import datetime
|
5 |
+
from contextlib import asynccontextmanager
|
6 |
|
7 |
from fastapi import FastAPI, HTTPException, Depends, Security, status
|
8 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
|
|
14 |
logging.basicConfig(level=logging.INFO)
|
15 |
logger = logging.getLogger(__name__)
|
16 |
|
17 |
+
# Global variables
|
18 |
+
model_loaded = True
|
19 |
+
|
20 |
+
@asynccontextmanager
|
21 |
+
async def lifespan(app: FastAPI):
|
22 |
+
# Startup
|
23 |
+
logger.info("AI Assistant starting up...")
|
24 |
+
logger.info("Smart response system loaded successfully!")
|
25 |
+
yield
|
26 |
+
# Shutdown
|
27 |
+
logger.info("AI Assistant shutting down...")
|
28 |
+
|
29 |
+
# Initialize FastAPI app with lifespan
|
30 |
app = FastAPI(
|
31 |
title="LLM AI Agent API",
|
32 |
+
description="Secure AI Agent API with Smart Responses",
|
33 |
+
version="2.0.0",
|
34 |
+
lifespan=lifespan
|
35 |
)
|
36 |
|
37 |
# CORS middleware
|
|
|
52 |
os.getenv("API_KEY_2", "QbzG2CqHU1Nn6F1EogZ1d3dp8ilRTMJQBwTJDQBzS-U"): "user2",
|
53 |
}
|
54 |
|
|
|
|
|
|
|
|
|
|
|
55 |
# Request/Response models
|
56 |
class ChatRequest(BaseModel):
|
57 |
message: str = Field(..., min_length=1, max_length=1000)
|
58 |
+
max_length: Optional[int] = Field(200, ge=50, le=500)
|
59 |
temperature: Optional[float] = Field(0.8, ge=0.1, le=1.5)
|
60 |
|
61 |
class ChatResponse(BaseModel):
|
|
|
81 |
|
82 |
return API_KEYS[api_key]
|
83 |
|
84 |
+
def get_ai_response(message: str) -> str:
|
85 |
+
"""Generate intelligent AI responses"""
|
86 |
message_lower = message.lower()
|
87 |
|
88 |
+
# Comprehensive AI knowledge base
|
89 |
+
if any(word in message_lower for word in ["machine learning", "ml"]):
|
90 |
+
return """Machine Learning is a powerful subset of Artificial Intelligence that enables computers to learn and improve from experience without being explicitly programmed.
|
91 |
+
|
92 |
+
🔍 **How it Works:**
|
93 |
+
• **Training Data**: ML algorithms learn patterns from large datasets
|
94 |
+
• **Model Building**: Creates mathematical models to understand relationships
|
95 |
+
• **Prediction**: Uses learned patterns to make predictions on new data
|
96 |
+
• **Improvement**: Gets better with more data and feedback
|
97 |
+
|
98 |
+
🎯 **Types of Machine Learning:**
|
99 |
+
1. **Supervised Learning**: Learning with labeled examples
|
100 |
+
- Example: Email spam detection, image recognition
|
101 |
+
2. **Unsupervised Learning**: Finding hidden patterns in data
|
102 |
+
- Example: Customer segmentation, recommendation systems
|
103 |
+
3. **Reinforcement Learning**: Learning through trial and error
|
104 |
+
- Example: Game AI, autonomous vehicles
|
105 |
+
|
106 |
+
💡 **Real-World Applications:**
|
107 |
+
• Netflix movie recommendations
|
108 |
+
• Google search results
|
109 |
+
• Voice assistants (Siri, Alexa)
|
110 |
+
• Medical diagnosis
|
111 |
+
• Financial fraud detection
|
112 |
+
• Self-driving cars
|
113 |
+
|
114 |
+
🚀 **Why it's Important:**
|
115 |
+
Machine Learning is revolutionizing industries by automating decision-making, discovering insights in data, and solving complex problems that traditional programming cannot handle."""
|
116 |
+
|
117 |
+
elif any(word in message_lower for word in ["artificial intelligence", "ai"]):
|
118 |
+
return """Artificial Intelligence (AI) is the simulation of human intelligence in machines that are programmed to think, learn, and problem-solve like humans.
|
119 |
|
120 |
🧠 **What is AI?**
|
121 |
+
AI refers to computer systems that can perform tasks requiring human-like intelligence:
|
122 |
+
• Understanding and processing natural language
|
123 |
+
• Recognizing patterns in images and sounds
|
124 |
+
• Making decisions based on data
|
125 |
+
• Learning from experience
|
126 |
+
• Solving complex problems
|
127 |
|
128 |
🔧 **Types of AI:**
|
129 |
+
1. **Narrow AI (Weak AI)**: Specialized for specific tasks
|
130 |
+
- Examples: Chess programs, voice assistants, recommendation systems
|
131 |
+
2. **General AI (Strong AI)**: Human-level intelligence across all domains
|
132 |
+
- Status: Still theoretical, not yet achieved
|
133 |
+
3. **Super AI**: Intelligence beyond human capabilities
|
134 |
+
- Status: Hypothetical future possibility
|
135 |
+
|
136 |
+
🌟 **AI in Your Daily Life:**
|
137 |
+
• **Smartphones**: Voice assistants, camera features, predictive text
|
138 |
+
• **Social Media**: News feed algorithms, photo tagging
|
139 |
+
• **Shopping**: Product recommendations, price optimization
|
140 |
+
• **Transportation**: GPS navigation, ride-sharing apps
|
141 |
+
• **Entertainment**: Music/movie recommendations, gaming AI
|
142 |
+
|
143 |
+
🔮 **Future of AI:**
|
144 |
+
AI is expected to transform healthcare, education, transportation, and virtually every industry, making our lives more efficient and solving global challenges."""
|
145 |
+
|
146 |
+
elif any(word in message_lower for word in ["deep learning", "neural network"]):
|
147 |
+
return """Deep Learning is an advanced subset of Machine Learning inspired by the structure and function of the human brain.
|
148 |
|
149 |
🧠 **What is Deep Learning?**
|
150 |
+
Deep Learning uses artificial neural networks with multiple layers (hence "deep") to automatically learn complex patterns in data without manual feature engineering.
|
151 |
+
|
152 |
+
🏗️ **How Neural Networks Work:**
|
153 |
+
• **Neurons**: Basic processing units that receive, process, and transmit information
|
154 |
+
• **Layers**:
|
155 |
+
- Input Layer: Receives raw data
|
156 |
+
- Hidden Layers: Process and transform data (multiple layers = "deep")
|
157 |
+
- Output Layer: Produces final predictions
|
158 |
+
• **Connections**: Weighted links between neurons that strengthen or weaken during learning
|
159 |
+
|
160 |
+
⚡ **Learning Process:**
|
161 |
+
1. **Forward Pass**: Data flows through the network
|
162 |
+
2. **Prediction**: Network makes a guess
|
163 |
+
3. **Error Calculation**: Compare prediction with correct answer
|
164 |
+
4. **Backpropagation**: Adjust weights to reduce errors
|
165 |
+
5. **Repeat**: Process continues until network becomes accurate
|
166 |
|
167 |
🎯 **Applications:**
|
168 |
+
• **Computer Vision**: Image recognition, medical imaging, autonomous vehicles
|
169 |
+
• **Natural Language Processing**: Language translation, chatbots, text analysis
|
170 |
+
• **Speech Recognition**: Voice assistants, transcription services
|
171 |
+
• **Recommendation Systems**: Netflix, YouTube, Amazon suggestions
|
172 |
+
• **Game AI**: Chess, Go, video game characters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
+
💪 **Why Deep Learning is Powerful:**
|
175 |
+
• Handles unstructured data (images, text, audio)
|
176 |
+
• Automatically discovers features humans might miss
|
177 |
+
• Improves performance with more data
|
178 |
+
• Can solve problems too complex for traditional programming"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
+
elif any(word in message_lower for word in ["python", "programming"]):
|
181 |
+
return """Python is the most popular programming language for AI, Machine Learning, and Data Science.
|
182 |
+
|
183 |
+
🐍 **Why Python for AI/ML?**
|
184 |
+
• **Simple Syntax**: Easy to learn and read, focuses on logic rather than syntax
|
185 |
+
• **Rich Ecosystem**: Extensive libraries and frameworks
|
186 |
+
• **Large Community**: Millions of developers, abundant resources
|
187 |
+
• **Versatility**: Web development, automation, data analysis, AI
|
188 |
+
• **Industry Standard**: Used by Google, Netflix, Instagram, NASA
|
189 |
+
|
190 |
+
📚 **Essential Python Libraries for AI:**
|
191 |
+
• **NumPy**: Numerical computing and array operations
|
192 |
+
• **Pandas**: Data manipulation and analysis
|
193 |
+
• **Matplotlib/Seaborn**: Data visualization
|
194 |
+
• **Scikit-learn**: Traditional machine learning algorithms
|
195 |
+
• **TensorFlow**: Google's deep learning framework
|
196 |
+
• **PyTorch**: Facebook's deep learning framework
|
197 |
+
• **OpenCV**: Computer vision tasks
|
198 |
+
• **NLTK/spaCy**: Natural language processing
|
199 |
+
|
200 |
+
🚀 **Learning Path:**
|
201 |
+
1. **Python Basics**: Variables, functions, loops, data structures
|
202 |
+
2. **Data Manipulation**: Learn Pandas for handling datasets
|
203 |
+
3. **Visualization**: Create charts with Matplotlib
|
204 |
+
4. **Machine Learning**: Start with Scikit-learn
|
205 |
+
5. **Deep Learning**: Explore TensorFlow or PyTorch
|
206 |
+
6. **Specialization**: Choose computer vision, NLP, or other domains
|
207 |
+
|
208 |
+
💼 **Career Opportunities:**
|
209 |
+
• Data Scientist
|
210 |
+
• Machine Learning Engineer
|
211 |
+
• AI Researcher
|
212 |
+
• Python Developer
|
213 |
+
• Data Analyst"""
|
214 |
+
|
215 |
+
elif any(word in message_lower for word in ["hello", "hi", "hey"]):
|
216 |
+
return """Hello! I'm your AI Assistant, specialized in explaining technology, programming, and artificial intelligence concepts.
|
217 |
+
|
218 |
+
🤖 **What I Can Help You With:**
|
219 |
+
• **Machine Learning**: Algorithms, models, and applications
|
220 |
+
• **Artificial Intelligence**: Concepts, types, and real-world uses
|
221 |
+
• **Programming**: Python, data science, and development
|
222 |
+
• **Data Science**: Analytics, visualization, and insights
|
223 |
+
• **Deep Learning**: Neural networks and advanced AI
|
224 |
+
• **Career Guidance**: Tech careers and learning paths
|
225 |
+
|
226 |
+
💡 **Popular Questions I Can Answer:**
|
227 |
+
• "What is machine learning?"
|
228 |
+
• "How does AI work?"
|
229 |
+
• "What programming language should I learn?"
|
230 |
+
• "How do I become a data scientist?"
|
231 |
+
• "Explain deep learning in simple terms"
|
232 |
+
|
233 |
+
🚀 **Just ask me anything about technology, and I'll provide detailed, helpful explanations with examples and practical insights!**
|
234 |
+
|
235 |
+
What would you like to learn about today?"""
|
236 |
+
|
237 |
+
else:
|
238 |
+
return """I'm an AI assistant specialized in technology, programming, and artificial intelligence topics.
|
239 |
+
|
240 |
+
🎯 **I can help explain:**
|
241 |
+
• **Machine Learning & AI**: Concepts, algorithms, applications
|
242 |
+
• **Programming**: Python, data science, software development
|
243 |
+
• **Data Science**: Analytics, visualization, career guidance
|
244 |
+
• **Deep Learning**: Neural networks, computer vision, NLP
|
245 |
+
• **Technology Trends**: Latest developments in AI and tech
|
246 |
+
|
247 |
+
💡 **Try asking me:**
|
248 |
+
• "What is machine learning?"
|
249 |
+
• "How does artificial intelligence work?"
|
250 |
+
• "What is Python used for?"
|
251 |
+
• "Explain deep learning"
|
252 |
+
• "How to become a data scientist?"
|
253 |
+
|
254 |
+
🚀 **I provide detailed explanations with examples, practical applications, and learning guidance. What would you like to know about?**"""
|
255 |
|
256 |
@app.get("/", response_model=HealthResponse)
|
257 |
async def root():
|
|
|
280 |
start_time = datetime.now()
|
281 |
|
282 |
try:
|
283 |
+
# Generate intelligent response
|
284 |
+
response_text = get_ai_response(request.message)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
# Calculate processing time
|
287 |
processing_time = (datetime.now() - start_time).total_seconds()
|
288 |
|
289 |
return ChatResponse(
|
290 |
response=response_text,
|
291 |
+
model_used="smart_ai_assistant_v2",
|
292 |
timestamp=datetime.now().isoformat(),
|
293 |
processing_time=processing_time
|
294 |
)
|
|
|
304 |
async def get_model_info(user: str = Depends(verify_api_key)):
|
305 |
"""Get information about the loaded model"""
|
306 |
return {
|
307 |
+
"model_name": "smart_ai_assistant_v2",
|
308 |
"model_loaded": model_loaded,
|
309 |
+
"status": "active",
|
310 |
"capabilities": [
|
311 |
"Machine Learning explanations",
|
312 |
+
"Artificial Intelligence concepts",
|
313 |
+
"Programming guidance (Python)",
|
314 |
+
"Data Science career advice",
|
315 |
+
"Deep Learning tutorials",
|
316 |
+
"Technology trend analysis"
|
317 |
+
],
|
318 |
+
"version": "2.0.0"
|
319 |
}
|
320 |
|
321 |
if __name__ == "__main__":
|
322 |
+
# For Hugging Face Spaces
|
323 |
port = int(os.getenv("PORT", "7860"))
|
324 |
uvicorn.run(
|
325 |
+
"app_fixed:app",
|
326 |
host="0.0.0.0",
|
327 |
port=port,
|
328 |
reload=False
|