Spaces:
Sleeping
Sleeping
Fix: Use simplified app for better compatibility
Browse files
app.py
CHANGED
@@ -1,16 +1,12 @@
|
|
1 |
import os
|
2 |
-
import secrets
|
3 |
-
import hashlib
|
4 |
-
from typing import Optional, Dict, Any
|
5 |
-
from datetime import datetime, timedelta
|
6 |
import logging
|
|
|
|
|
7 |
|
8 |
from fastapi import FastAPI, HTTPException, Depends, Security, status
|
9 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
10 |
from fastapi.middleware.cors import CORSMiddleware
|
11 |
from pydantic import BaseModel, Field
|
12 |
-
import torch
|
13 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
14 |
import uvicorn
|
15 |
|
16 |
# Configure logging
|
@@ -21,15 +17,13 @@ logger = logging.getLogger(__name__)
|
|
21 |
app = FastAPI(
|
22 |
title="LLM AI Agent API",
|
23 |
description="Secure AI Agent API with Local LLM deployment",
|
24 |
-
version="1.0.0"
|
25 |
-
docs_url="/docs",
|
26 |
-
redoc_url="/redoc"
|
27 |
)
|
28 |
|
29 |
-
# CORS middleware
|
30 |
app.add_middleware(
|
31 |
CORSMiddleware,
|
32 |
-
allow_origins=["*"],
|
33 |
allow_credentials=True,
|
34 |
allow_methods=["*"],
|
35 |
allow_headers=["*"],
|
@@ -39,135 +33,101 @@ app.add_middleware(
|
|
39 |
security = HTTPBearer()
|
40 |
|
41 |
# Configuration
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
os.getenv("API_KEY_2", "your-secure-api-key-2"): "user2",
|
47 |
-
# Add more API keys as needed
|
48 |
-
}
|
49 |
-
|
50 |
-
# Model configuration
|
51 |
-
MODEL_NAME = os.getenv("MODEL_NAME", "microsoft/DialoGPT-medium") # Lightweight model for free tier
|
52 |
-
MAX_LENGTH = int(os.getenv("MAX_LENGTH", "512"))
|
53 |
-
TEMPERATURE = float(os.getenv("TEMPERATURE", "0.7"))
|
54 |
-
TOP_P = float(os.getenv("TOP_P", "0.9"))
|
55 |
-
|
56 |
-
# Rate limiting (requests per minute per API key)
|
57 |
-
RATE_LIMIT = int(os.getenv("RATE_LIMIT", "10"))
|
58 |
|
59 |
-
# Global variables for model
|
60 |
model = None
|
61 |
tokenizer = None
|
62 |
-
|
63 |
|
64 |
# Request/Response models
|
65 |
class ChatRequest(BaseModel):
|
66 |
-
message: str = Field(..., min_length=1, max_length=1000
|
67 |
-
max_length: Optional[int] = Field(
|
68 |
-
temperature: Optional[float] = Field(
|
69 |
-
system_prompt: Optional[str] = Field(None, max_length=500, description="Optional system prompt")
|
70 |
|
71 |
class ChatResponse(BaseModel):
|
72 |
response: str
|
73 |
model_used: str
|
74 |
timestamp: str
|
75 |
-
tokens_used: int
|
76 |
processing_time: float
|
77 |
|
78 |
class HealthResponse(BaseModel):
|
79 |
status: str
|
80 |
model_loaded: bool
|
81 |
timestamp: str
|
82 |
-
version: str
|
83 |
-
|
84 |
-
# Rate limiting storage (in production, use Redis)
|
85 |
-
request_counts: Dict[str, Dict[str, int]] = {}
|
86 |
|
87 |
def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security)) -> str:
|
88 |
"""Verify API key authentication"""
|
89 |
api_key = credentials.credentials
|
90 |
|
91 |
-
if api_key not in
|
92 |
raise HTTPException(
|
93 |
status_code=status.HTTP_401_UNAUTHORIZED,
|
94 |
-
detail="Invalid API key"
|
95 |
-
headers={"WWW-Authenticate": "Bearer"},
|
96 |
)
|
97 |
|
98 |
-
return
|
99 |
-
|
100 |
-
def check_rate_limit(api_key: str) -> bool:
|
101 |
-
"""Simple rate limiting implementation"""
|
102 |
-
current_minute = datetime.now().strftime("%Y-%m-%d-%H-%M")
|
103 |
-
|
104 |
-
if api_key not in request_counts:
|
105 |
-
request_counts[api_key] = {}
|
106 |
-
|
107 |
-
if current_minute not in request_counts[api_key]:
|
108 |
-
request_counts[api_key][current_minute] = 0
|
109 |
-
|
110 |
-
if request_counts[api_key][current_minute] >= Config.RATE_LIMIT:
|
111 |
-
return False
|
112 |
-
|
113 |
-
request_counts[api_key][current_minute] += 1
|
114 |
-
return True
|
115 |
|
116 |
@app.on_event("startup")
|
117 |
async def load_model():
|
118 |
"""Load the LLM model on startup"""
|
119 |
-
global model, tokenizer,
|
120 |
|
121 |
try:
|
122 |
-
logger.info(
|
123 |
-
|
124 |
-
# Load tokenizer
|
125 |
-
tokenizer = AutoTokenizer.from_pretrained(Config.MODEL_NAME)
|
126 |
-
|
127 |
-
# Add padding token if it doesn't exist
|
128 |
-
if tokenizer.pad_token is None:
|
129 |
-
tokenizer.pad_token = tokenizer.eos_token
|
130 |
-
|
131 |
-
# Load model with optimizations for free tier
|
132 |
-
model = AutoModelForCausalLM.from_pretrained(
|
133 |
-
Config.MODEL_NAME,
|
134 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
135 |
-
device_map="auto" if torch.cuda.is_available() else None,
|
136 |
-
low_cpu_mem_usage=True
|
137 |
-
)
|
138 |
-
|
139 |
-
# Create text generation pipeline
|
140 |
-
text_generator = pipeline(
|
141 |
-
"text-generation",
|
142 |
-
model=model,
|
143 |
-
tokenizer=tokenizer,
|
144 |
-
device=0 if torch.cuda.is_available() else -1
|
145 |
-
)
|
146 |
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
except Exception as e:
|
150 |
-
logger.error(f"Error
|
151 |
-
|
152 |
|
153 |
@app.get("/", response_model=HealthResponse)
|
154 |
async def root():
|
155 |
"""Health check endpoint"""
|
156 |
return HealthResponse(
|
157 |
status="healthy",
|
158 |
-
model_loaded=
|
159 |
-
timestamp=datetime.now().isoformat()
|
160 |
-
version="1.0.0"
|
161 |
)
|
162 |
|
163 |
@app.get("/health", response_model=HealthResponse)
|
164 |
async def health_check():
|
165 |
"""Detailed health check"""
|
166 |
return HealthResponse(
|
167 |
-
status="healthy" if
|
168 |
-
model_loaded=
|
169 |
-
timestamp=datetime.now().isoformat()
|
170 |
-
version="1.0.0"
|
171 |
)
|
172 |
|
173 |
@app.post("/chat", response_model=ChatResponse)
|
@@ -178,58 +138,62 @@ async def chat(
|
|
178 |
"""Main chat endpoint for AI agent interaction"""
|
179 |
start_time = datetime.now()
|
180 |
|
181 |
-
# Check rate limiting
|
182 |
-
api_key = None # In a real implementation, you'd extract this from the token
|
183 |
-
# if not check_rate_limit(api_key):
|
184 |
-
# raise HTTPException(
|
185 |
-
# status_code=status.HTTP_429_TOO_MANY_REQUESTS,
|
186 |
-
# detail="Rate limit exceeded. Please try again later."
|
187 |
-
# )
|
188 |
-
|
189 |
-
if model is None or tokenizer is None:
|
190 |
-
raise HTTPException(
|
191 |
-
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
|
192 |
-
detail="Model not loaded. Please try again later."
|
193 |
-
)
|
194 |
-
|
195 |
try:
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
# Calculate processing time
|
223 |
processing_time = (datetime.now() - start_time).total_seconds()
|
224 |
|
225 |
-
# Count tokens (approximate)
|
226 |
-
tokens_used = len(tokenizer.encode(response_text))
|
227 |
-
|
228 |
return ChatResponse(
|
229 |
response=response_text,
|
230 |
-
model_used=
|
231 |
timestamp=datetime.now().isoformat(),
|
232 |
-
tokens_used=tokens_used,
|
233 |
processing_time=processing_time
|
234 |
)
|
235 |
|
@@ -244,18 +208,17 @@ async def chat(
|
|
244 |
async def get_model_info(user: str = Depends(verify_api_key)):
|
245 |
"""Get information about the loaded model"""
|
246 |
return {
|
247 |
-
"model_name":
|
248 |
-
"model_loaded":
|
249 |
-
"
|
250 |
-
"temperature": Config.TEMPERATURE,
|
251 |
-
"device": "cuda" if torch.cuda.is_available() else "cpu"
|
252 |
}
|
253 |
|
254 |
if __name__ == "__main__":
|
255 |
-
# For local development
|
|
|
256 |
uvicorn.run(
|
257 |
-
"
|
258 |
host="0.0.0.0",
|
259 |
-
port=
|
260 |
reload=False
|
261 |
)
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
2 |
import logging
|
3 |
+
from typing import Optional
|
4 |
+
from datetime import datetime
|
5 |
|
6 |
from fastapi import FastAPI, HTTPException, Depends, Security, status
|
7 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
8 |
from fastapi.middleware.cors import CORSMiddleware
|
9 |
from pydantic import BaseModel, Field
|
|
|
|
|
10 |
import uvicorn
|
11 |
|
12 |
# Configure logging
|
|
|
17 |
app = FastAPI(
|
18 |
title="LLM AI Agent API",
|
19 |
description="Secure AI Agent API with Local LLM deployment",
|
20 |
+
version="1.0.0"
|
|
|
|
|
21 |
)
|
22 |
|
23 |
+
# CORS middleware
|
24 |
app.add_middleware(
|
25 |
CORSMiddleware,
|
26 |
+
allow_origins=["*"],
|
27 |
allow_credentials=True,
|
28 |
allow_methods=["*"],
|
29 |
allow_headers=["*"],
|
|
|
33 |
security = HTTPBearer()
|
34 |
|
35 |
# Configuration
|
36 |
+
API_KEYS = {
|
37 |
+
os.getenv("API_KEY_1", "27Eud5J73j6SqPQAT2ioV-CtiCg-p0WNqq6I4U0Ig6E"): "user1",
|
38 |
+
os.getenv("API_KEY_2", "QbzG2CqHU1Nn6F1EogZ1d3dp8ilRTMJQBwTJDQBzS-U"): "user2",
|
39 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# Global variables for model
|
42 |
model = None
|
43 |
tokenizer = None
|
44 |
+
model_loaded = False
|
45 |
|
46 |
# Request/Response models
|
47 |
class ChatRequest(BaseModel):
|
48 |
+
message: str = Field(..., min_length=1, max_length=1000)
|
49 |
+
max_length: Optional[int] = Field(100, ge=10, le=500)
|
50 |
+
temperature: Optional[float] = Field(0.7, ge=0.1, le=2.0)
|
|
|
51 |
|
52 |
class ChatResponse(BaseModel):
|
53 |
response: str
|
54 |
model_used: str
|
55 |
timestamp: str
|
|
|
56 |
processing_time: float
|
57 |
|
58 |
class HealthResponse(BaseModel):
|
59 |
status: str
|
60 |
model_loaded: bool
|
61 |
timestamp: str
|
|
|
|
|
|
|
|
|
62 |
|
63 |
def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security)) -> str:
|
64 |
"""Verify API key authentication"""
|
65 |
api_key = credentials.credentials
|
66 |
|
67 |
+
if api_key not in API_KEYS:
|
68 |
raise HTTPException(
|
69 |
status_code=status.HTTP_401_UNAUTHORIZED,
|
70 |
+
detail="Invalid API key"
|
|
|
71 |
)
|
72 |
|
73 |
+
return API_KEYS[api_key]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
@app.on_event("startup")
|
76 |
async def load_model():
|
77 |
"""Load the LLM model on startup"""
|
78 |
+
global model, tokenizer, model_loaded
|
79 |
|
80 |
try:
|
81 |
+
logger.info("Loading model...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
# Try to import and load transformers
|
84 |
+
try:
|
85 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
86 |
+
import torch
|
87 |
+
|
88 |
+
model_name = os.getenv("MODEL_NAME", "microsoft/DialoGPT-small")
|
89 |
+
logger.info(f"Loading model: {model_name}")
|
90 |
+
|
91 |
+
# Load tokenizer
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
93 |
+
if tokenizer.pad_token is None:
|
94 |
+
tokenizer.pad_token = tokenizer.eos_token
|
95 |
+
|
96 |
+
# Load model
|
97 |
+
model = AutoModelForCausalLM.from_pretrained(
|
98 |
+
model_name,
|
99 |
+
torch_dtype=torch.float32, # Use float32 for compatibility
|
100 |
+
low_cpu_mem_usage=True
|
101 |
+
)
|
102 |
+
|
103 |
+
model_loaded = True
|
104 |
+
logger.info("Model loaded successfully!")
|
105 |
+
|
106 |
+
except Exception as e:
|
107 |
+
logger.warning(f"Could not load transformers model: {e}")
|
108 |
+
logger.info("Running in demo mode with simple responses")
|
109 |
+
model_loaded = False
|
110 |
|
111 |
except Exception as e:
|
112 |
+
logger.error(f"Error during startup: {str(e)}")
|
113 |
+
model_loaded = False
|
114 |
|
115 |
@app.get("/", response_model=HealthResponse)
|
116 |
async def root():
|
117 |
"""Health check endpoint"""
|
118 |
return HealthResponse(
|
119 |
status="healthy",
|
120 |
+
model_loaded=model_loaded,
|
121 |
+
timestamp=datetime.now().isoformat()
|
|
|
122 |
)
|
123 |
|
124 |
@app.get("/health", response_model=HealthResponse)
|
125 |
async def health_check():
|
126 |
"""Detailed health check"""
|
127 |
return HealthResponse(
|
128 |
+
status="healthy" if model_loaded else "demo_mode",
|
129 |
+
model_loaded=model_loaded,
|
130 |
+
timestamp=datetime.now().isoformat()
|
|
|
131 |
)
|
132 |
|
133 |
@app.post("/chat", response_model=ChatResponse)
|
|
|
138 |
"""Main chat endpoint for AI agent interaction"""
|
139 |
start_time = datetime.now()
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
try:
|
142 |
+
if model_loaded and model is not None and tokenizer is not None:
|
143 |
+
# Use actual model
|
144 |
+
from transformers import pipeline
|
145 |
+
|
146 |
+
generator = pipeline(
|
147 |
+
"text-generation",
|
148 |
+
model=model,
|
149 |
+
tokenizer=tokenizer,
|
150 |
+
device=-1 # Use CPU
|
151 |
+
)
|
152 |
+
|
153 |
+
# Generate response
|
154 |
+
generated = generator(
|
155 |
+
request.message,
|
156 |
+
max_length=request.max_length,
|
157 |
+
temperature=request.temperature,
|
158 |
+
do_sample=True,
|
159 |
+
pad_token_id=tokenizer.eos_token_id,
|
160 |
+
num_return_sequences=1
|
161 |
+
)
|
162 |
+
|
163 |
+
response_text = generated[0]['generated_text']
|
164 |
+
if request.message in response_text:
|
165 |
+
response_text = response_text.replace(request.message, "").strip()
|
166 |
+
|
167 |
+
model_used = os.getenv("MODEL_NAME", "microsoft/DialoGPT-small")
|
168 |
+
|
169 |
+
else:
|
170 |
+
# Demo mode - simple responses
|
171 |
+
demo_responses = {
|
172 |
+
"hello": "Hello! I'm your AI assistant. How can I help you today?",
|
173 |
+
"hi": "Hi there! I'm ready to assist you.",
|
174 |
+
"how are you": "I'm doing well, thank you for asking! How can I help you?",
|
175 |
+
"what is ai": "AI (Artificial Intelligence) is the simulation of human intelligence in machines that are programmed to think and learn.",
|
176 |
+
"machine learning": "Machine learning is a subset of AI that enables computers to learn and improve from experience without being explicitly programmed.",
|
177 |
+
"default": "I'm an AI assistant ready to help you. Could you please rephrase your question?"
|
178 |
+
}
|
179 |
+
|
180 |
+
message_lower = request.message.lower()
|
181 |
+
response_text = demo_responses.get("default", "I'm here to help!")
|
182 |
+
|
183 |
+
for key, response in demo_responses.items():
|
184 |
+
if key in message_lower:
|
185 |
+
response_text = response
|
186 |
+
break
|
187 |
+
|
188 |
+
model_used = "demo_mode"
|
189 |
|
190 |
# Calculate processing time
|
191 |
processing_time = (datetime.now() - start_time).total_seconds()
|
192 |
|
|
|
|
|
|
|
193 |
return ChatResponse(
|
194 |
response=response_text,
|
195 |
+
model_used=model_used,
|
196 |
timestamp=datetime.now().isoformat(),
|
|
|
197 |
processing_time=processing_time
|
198 |
)
|
199 |
|
|
|
208 |
async def get_model_info(user: str = Depends(verify_api_key)):
|
209 |
"""Get information about the loaded model"""
|
210 |
return {
|
211 |
+
"model_name": os.getenv("MODEL_NAME", "microsoft/DialoGPT-small"),
|
212 |
+
"model_loaded": model_loaded,
|
213 |
+
"status": "loaded" if model_loaded else "demo_mode"
|
|
|
|
|
214 |
}
|
215 |
|
216 |
if __name__ == "__main__":
|
217 |
+
# For local development and Hugging Face Spaces
|
218 |
+
port = int(os.getenv("PORT", "7860"))
|
219 |
uvicorn.run(
|
220 |
+
"app_simple:app",
|
221 |
host="0.0.0.0",
|
222 |
+
port=port,
|
223 |
reload=False
|
224 |
)
|