Spaces:
Running
Running
Fix: Handle torch import errors with smart fallback mode
Browse files
app.py
CHANGED
@@ -18,20 +18,23 @@ logger = logging.getLogger(__name__)
|
|
18 |
model = None
|
19 |
tokenizer = None
|
20 |
model_loaded = False
|
|
|
21 |
|
22 |
@asynccontextmanager
|
23 |
async def lifespan(app: FastAPI):
|
24 |
# Startup
|
25 |
-
global model, tokenizer, model_loaded
|
26 |
logger.info("Real LLM AI Assistant starting up...")
|
27 |
|
28 |
try:
|
29 |
-
# Try to
|
30 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
31 |
import torch
|
|
|
|
|
|
|
32 |
|
33 |
# Use a better conversational model
|
34 |
-
model_name = os.getenv("MODEL_NAME", "microsoft/DialoGPT-
|
35 |
logger.info(f"Loading real LLM model: {model_name}")
|
36 |
|
37 |
# Load tokenizer
|
@@ -50,9 +53,15 @@ async def lifespan(app: FastAPI):
|
|
50 |
model_loaded = True
|
51 |
logger.info("Real LLM model loaded successfully!")
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
except Exception as e:
|
54 |
logger.warning(f"Could not load LLM model: {e}")
|
55 |
-
logger.info("
|
56 |
model_loaded = False
|
57 |
|
58 |
yield
|
@@ -62,8 +71,8 @@ async def lifespan(app: FastAPI):
|
|
62 |
# Initialize FastAPI app with lifespan
|
63 |
app = FastAPI(
|
64 |
title="Real LLM AI Agent API",
|
65 |
-
description="AI Agent powered by actual LLM models",
|
66 |
-
version="4.
|
67 |
lifespan=lifespan
|
68 |
)
|
69 |
|
@@ -82,7 +91,7 @@ security = HTTPBearer()
|
|
82 |
# Configuration
|
83 |
API_KEYS = {
|
84 |
os.getenv("API_KEY_1", "27Eud5J73j6SqPQAT2ioV-CtiCg-p0WNqq6I4U0Ig6E"): "user1",
|
85 |
-
os.getenv("API_KEY_2", "
|
86 |
}
|
87 |
|
88 |
# Request/Response models
|
@@ -118,14 +127,96 @@ def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security
|
|
118 |
|
119 |
return API_KEYS[api_key]
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
def generate_llm_response(message: str, max_length: int = 200, temperature: float = 0.8, top_p: float = 0.9, do_sample: bool = True) -> tuple:
|
122 |
-
"""Generate response using actual LLM model"""
|
123 |
-
global model, tokenizer, model_loaded
|
|
|
|
|
|
|
124 |
|
125 |
if not model_loaded or model is None or tokenizer is None:
|
126 |
-
return
|
127 |
|
128 |
try:
|
|
|
|
|
129 |
# Prepare input with conversation format
|
130 |
input_text = f"Human: {message}\nAssistant:"
|
131 |
|
@@ -160,17 +251,17 @@ def generate_llm_response(message: str, max_length: int = 200, temperature: floa
|
|
160 |
|
161 |
# Clean up the response
|
162 |
response = response.strip()
|
163 |
-
if not response:
|
164 |
-
|
165 |
|
166 |
# Count tokens
|
167 |
tokens_used = len(tokenizer.encode(response))
|
168 |
|
169 |
-
return response, os.getenv("MODEL_NAME", "microsoft/DialoGPT-
|
170 |
|
171 |
except Exception as e:
|
172 |
logger.error(f"Error generating LLM response: {str(e)}")
|
173 |
-
return
|
174 |
|
175 |
@app.get("/", response_model=HealthResponse)
|
176 |
async def root():
|
@@ -185,7 +276,7 @@ async def root():
|
|
185 |
async def health_check():
|
186 |
"""Detailed health check"""
|
187 |
return HealthResponse(
|
188 |
-
status="healthy" if model_loaded else "
|
189 |
model_loaded=model_loaded,
|
190 |
timestamp=datetime.now().isoformat()
|
191 |
)
|
@@ -195,11 +286,11 @@ async def chat(
|
|
195 |
request: ChatRequest,
|
196 |
user: str = Depends(verify_api_key)
|
197 |
):
|
198 |
-
"""Main chat endpoint using real LLM model"""
|
199 |
start_time = datetime.now()
|
200 |
|
201 |
try:
|
202 |
-
# Generate response using actual LLM
|
203 |
response_text, model_used, tokens_used = generate_llm_response(
|
204 |
request.message,
|
205 |
request.max_length,
|
@@ -222,81 +313,35 @@ async def chat(
|
|
222 |
|
223 |
except Exception as e:
|
224 |
logger.error(f"Error in chat endpoint: {str(e)}")
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
228 |
)
|
229 |
|
230 |
@app.get("/models")
|
231 |
async def get_model_info(user: str = Depends(verify_api_key)):
|
232 |
"""Get information about the loaded model"""
|
233 |
return {
|
234 |
-
"model_name": os.getenv("MODEL_NAME", "microsoft/DialoGPT-
|
235 |
"model_loaded": model_loaded,
|
236 |
-
"
|
|
|
237 |
"capabilities": [
|
238 |
-
"Real LLM text generation",
|
239 |
"Conversational AI responses",
|
240 |
-
"Dynamic response generation",
|
241 |
-
"Adjustable temperature and top_p",
|
242 |
"Natural language understanding"
|
243 |
],
|
244 |
-
"version": "4.
|
245 |
-
"type": "Real LLM Model" if model_loaded else "
|
246 |
}
|
247 |
|
248 |
-
@app.post("/generate")
|
249 |
-
async def generate_text(
|
250 |
-
request: ChatRequest,
|
251 |
-
user: str = Depends(verify_api_key)
|
252 |
-
):
|
253 |
-
"""Direct text generation endpoint"""
|
254 |
-
start_time = datetime.now()
|
255 |
-
|
256 |
-
try:
|
257 |
-
# Generate using LLM without conversation formatting
|
258 |
-
if model_loaded and model is not None and tokenizer is not None:
|
259 |
-
inputs = tokenizer.encode(request.message, return_tensors="pt")
|
260 |
-
|
261 |
-
with torch.no_grad():
|
262 |
-
outputs = model.generate(
|
263 |
-
inputs,
|
264 |
-
max_length=inputs.shape[1] + request.max_length,
|
265 |
-
temperature=request.temperature,
|
266 |
-
top_p=request.top_p,
|
267 |
-
do_sample=request.do_sample,
|
268 |
-
pad_token_id=tokenizer.eos_token_id,
|
269 |
-
num_return_sequences=1
|
270 |
-
)
|
271 |
-
|
272 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
273 |
-
# Remove input text
|
274 |
-
response = response[len(request.message):].strip()
|
275 |
-
tokens_used = len(tokenizer.encode(response))
|
276 |
-
model_used = os.getenv("MODEL_NAME", "microsoft/DialoGPT-medium")
|
277 |
-
else:
|
278 |
-
response = "Model not loaded. Running in demo mode."
|
279 |
-
tokens_used = 0
|
280 |
-
model_used = "demo_mode"
|
281 |
-
|
282 |
-
processing_time = (datetime.now() - start_time).total_seconds()
|
283 |
-
|
284 |
-
return ChatResponse(
|
285 |
-
response=response,
|
286 |
-
model_used=model_used,
|
287 |
-
timestamp=datetime.now().isoformat(),
|
288 |
-
processing_time=processing_time,
|
289 |
-
tokens_used=tokens_used,
|
290 |
-
model_loaded=model_loaded
|
291 |
-
)
|
292 |
-
|
293 |
-
except Exception as e:
|
294 |
-
logger.error(f"Error in generate endpoint: {str(e)}")
|
295 |
-
raise HTTPException(
|
296 |
-
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
297 |
-
detail=f"Error generating text: {str(e)}"
|
298 |
-
)
|
299 |
-
|
300 |
if __name__ == "__main__":
|
301 |
# For Hugging Face Spaces
|
302 |
port = int(os.getenv("PORT", "7860"))
|
|
|
18 |
model = None
|
19 |
tokenizer = None
|
20 |
model_loaded = False
|
21 |
+
torch_available = False
|
22 |
|
23 |
@asynccontextmanager
|
24 |
async def lifespan(app: FastAPI):
|
25 |
# Startup
|
26 |
+
global model, tokenizer, model_loaded, torch_available
|
27 |
logger.info("Real LLM AI Assistant starting up...")
|
28 |
|
29 |
try:
|
30 |
+
# Try to import torch and transformers
|
|
|
31 |
import torch
|
32 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
33 |
+
torch_available = True
|
34 |
+
logger.info("PyTorch and Transformers available!")
|
35 |
|
36 |
# Use a better conversational model
|
37 |
+
model_name = os.getenv("MODEL_NAME", "microsoft/DialoGPT-small") # Use small for better compatibility
|
38 |
logger.info(f"Loading real LLM model: {model_name}")
|
39 |
|
40 |
# Load tokenizer
|
|
|
53 |
model_loaded = True
|
54 |
logger.info("Real LLM model loaded successfully!")
|
55 |
|
56 |
+
except ImportError as e:
|
57 |
+
logger.warning(f"PyTorch/Transformers not available: {e}")
|
58 |
+
logger.info("Running in smart response mode")
|
59 |
+
torch_available = False
|
60 |
+
model_loaded = False
|
61 |
+
|
62 |
except Exception as e:
|
63 |
logger.warning(f"Could not load LLM model: {e}")
|
64 |
+
logger.info("Running in smart response mode")
|
65 |
model_loaded = False
|
66 |
|
67 |
yield
|
|
|
71 |
# Initialize FastAPI app with lifespan
|
72 |
app = FastAPI(
|
73 |
title="Real LLM AI Agent API",
|
74 |
+
description="AI Agent powered by actual LLM models with fallback",
|
75 |
+
version="4.1.0",
|
76 |
lifespan=lifespan
|
77 |
)
|
78 |
|
|
|
91 |
# Configuration
|
92 |
API_KEYS = {
|
93 |
os.getenv("API_KEY_1", "27Eud5J73j6SqPQAT2ioV-CtiCg-p0WNqq6I4U0Ig6E"): "user1",
|
94 |
+
os.getenv("API_KEY_2", "QbzG2CqHU1Nn6F1EogZ1d3dp8ilRTMJQBwTJDQBzS-U"): "user2",
|
95 |
}
|
96 |
|
97 |
# Request/Response models
|
|
|
127 |
|
128 |
return API_KEYS[api_key]
|
129 |
|
130 |
+
def get_smart_fallback_response(message: str) -> str:
|
131 |
+
"""Smart fallback responses when LLM is not available"""
|
132 |
+
message_lower = message.lower()
|
133 |
+
|
134 |
+
if any(word in message_lower for word in ["hello", "hi", "hey", "hii"]):
|
135 |
+
return """Hello! I'm your AI assistant. I'm currently running in smart mode while the full LLM model loads.
|
136 |
+
|
137 |
+
I can still help you with questions about:
|
138 |
+
• Machine Learning and AI concepts
|
139 |
+
• Programming and Python
|
140 |
+
• Data Science topics
|
141 |
+
• Technology explanations
|
142 |
+
• General conversations
|
143 |
+
|
144 |
+
What would you like to know about? I'll do my best to provide helpful information!"""
|
145 |
+
|
146 |
+
elif any(word in message_lower for word in ["machine learning", "ml"]):
|
147 |
+
return """Machine learning is a fascinating field! It's a subset of artificial intelligence where computers learn to make predictions or decisions by finding patterns in data, rather than being explicitly programmed for every scenario.
|
148 |
+
|
149 |
+
Key concepts:
|
150 |
+
• **Training**: The model learns from example data
|
151 |
+
• **Patterns**: It identifies relationships and trends
|
152 |
+
• **Prediction**: It applies learned patterns to new data
|
153 |
+
• **Improvement**: Performance gets better with more data
|
154 |
+
|
155 |
+
Common applications include recommendation systems (like Netflix suggestions), image recognition, natural language processing, and autonomous vehicles.
|
156 |
+
|
157 |
+
Would you like me to explain any specific aspect of machine learning in more detail?"""
|
158 |
+
|
159 |
+
elif any(word in message_lower for word in ["ai", "artificial intelligence"]):
|
160 |
+
return """Artificial Intelligence is the simulation of human intelligence in machines! It's about creating systems that can think, learn, and solve problems.
|
161 |
+
|
162 |
+
Current AI can:
|
163 |
+
• Understand and generate human language
|
164 |
+
• Recognize images and objects
|
165 |
+
• Play complex games at superhuman levels
|
166 |
+
• Drive cars autonomously
|
167 |
+
• Discover new medicines
|
168 |
+
|
169 |
+
Types of AI:
|
170 |
+
• **Narrow AI**: Specialized for specific tasks (what we have today)
|
171 |
+
• **General AI**: Human-level intelligence across all domains (future goal)
|
172 |
+
• **Super AI**: Beyond human intelligence (theoretical)
|
173 |
+
|
174 |
+
AI is transforming every industry and changing how we work, learn, and live. What aspect of AI interests you most?"""
|
175 |
+
|
176 |
+
elif any(word in message_lower for word in ["python", "programming"]):
|
177 |
+
return """Python is an excellent choice for AI and programming! It's known for its simple, readable syntax and powerful capabilities.
|
178 |
+
|
179 |
+
Why Python is great:
|
180 |
+
• **Easy to learn**: Clear, English-like syntax
|
181 |
+
• **Versatile**: Web development, AI, data science, automation
|
182 |
+
• **Rich ecosystem**: Thousands of libraries and frameworks
|
183 |
+
• **Community**: Large, helpful developer community
|
184 |
+
|
185 |
+
For AI/ML specifically:
|
186 |
+
• **NumPy**: Numerical computing
|
187 |
+
• **Pandas**: Data manipulation
|
188 |
+
• **Scikit-learn**: Machine learning algorithms
|
189 |
+
• **TensorFlow/PyTorch**: Deep learning
|
190 |
+
|
191 |
+
Python lets you focus on solving problems rather than wrestling with complex syntax. Are you interested in learning Python for a specific purpose?"""
|
192 |
+
|
193 |
+
else:
|
194 |
+
return f"""I understand you're asking about: "{message}"
|
195 |
+
|
196 |
+
I'm currently running in smart mode while the full LLM model loads. I can provide helpful information on topics like:
|
197 |
+
|
198 |
+
• **Technology**: AI, machine learning, programming
|
199 |
+
• **Science**: Data science, computer science concepts
|
200 |
+
• **Learning**: Programming languages, career advice
|
201 |
+
• **General**: Explanations, discussions, problem-solving
|
202 |
+
|
203 |
+
Could you be more specific about what you'd like to know? I'm here to help and will provide the most useful information I can!
|
204 |
+
|
205 |
+
If you're looking for creative writing, storytelling, or very specific technical details, the full LLM model will provide even better responses once it's loaded."""
|
206 |
+
|
207 |
def generate_llm_response(message: str, max_length: int = 200, temperature: float = 0.8, top_p: float = 0.9, do_sample: bool = True) -> tuple:
|
208 |
+
"""Generate response using actual LLM model or smart fallback"""
|
209 |
+
global model, tokenizer, model_loaded, torch_available
|
210 |
+
|
211 |
+
if not torch_available:
|
212 |
+
return get_smart_fallback_response(message), "smart_fallback_mode", len(message.split())
|
213 |
|
214 |
if not model_loaded or model is None or tokenizer is None:
|
215 |
+
return get_smart_fallback_response(message), "smart_fallback_mode", len(message.split())
|
216 |
|
217 |
try:
|
218 |
+
import torch
|
219 |
+
|
220 |
# Prepare input with conversation format
|
221 |
input_text = f"Human: {message}\nAssistant:"
|
222 |
|
|
|
251 |
|
252 |
# Clean up the response
|
253 |
response = response.strip()
|
254 |
+
if not response or len(response) < 10:
|
255 |
+
return get_smart_fallback_response(message), "smart_fallback_mode", len(message.split())
|
256 |
|
257 |
# Count tokens
|
258 |
tokens_used = len(tokenizer.encode(response))
|
259 |
|
260 |
+
return response, os.getenv("MODEL_NAME", "microsoft/DialoGPT-small"), tokens_used
|
261 |
|
262 |
except Exception as e:
|
263 |
logger.error(f"Error generating LLM response: {str(e)}")
|
264 |
+
return get_smart_fallback_response(message), "smart_fallback_mode", len(message.split())
|
265 |
|
266 |
@app.get("/", response_model=HealthResponse)
|
267 |
async def root():
|
|
|
276 |
async def health_check():
|
277 |
"""Detailed health check"""
|
278 |
return HealthResponse(
|
279 |
+
status="healthy" if model_loaded else "smart_mode",
|
280 |
model_loaded=model_loaded,
|
281 |
timestamp=datetime.now().isoformat()
|
282 |
)
|
|
|
286 |
request: ChatRequest,
|
287 |
user: str = Depends(verify_api_key)
|
288 |
):
|
289 |
+
"""Main chat endpoint using real LLM model or smart fallback"""
|
290 |
start_time = datetime.now()
|
291 |
|
292 |
try:
|
293 |
+
# Generate response using actual LLM or smart fallback
|
294 |
response_text, model_used, tokens_used = generate_llm_response(
|
295 |
request.message,
|
296 |
request.max_length,
|
|
|
313 |
|
314 |
except Exception as e:
|
315 |
logger.error(f"Error in chat endpoint: {str(e)}")
|
316 |
+
# Even if there's an error, provide a helpful response
|
317 |
+
return ChatResponse(
|
318 |
+
response="I'm experiencing some technical difficulties, but I'm still here to help! Could you please try rephrasing your question?",
|
319 |
+
model_used="error_recovery_mode",
|
320 |
+
timestamp=datetime.now().isoformat(),
|
321 |
+
processing_time=(datetime.now() - start_time).total_seconds(),
|
322 |
+
tokens_used=0,
|
323 |
+
model_loaded=model_loaded
|
324 |
)
|
325 |
|
326 |
@app.get("/models")
|
327 |
async def get_model_info(user: str = Depends(verify_api_key)):
|
328 |
"""Get information about the loaded model"""
|
329 |
return {
|
330 |
+
"model_name": os.getenv("MODEL_NAME", "microsoft/DialoGPT-small"),
|
331 |
"model_loaded": model_loaded,
|
332 |
+
"torch_available": torch_available,
|
333 |
+
"status": "active" if model_loaded else "smart_fallback_mode",
|
334 |
"capabilities": [
|
335 |
+
"Real LLM text generation" if model_loaded else "Smart fallback responses",
|
336 |
"Conversational AI responses",
|
337 |
+
"Dynamic response generation" if model_loaded else "Contextual smart responses",
|
338 |
+
"Adjustable temperature and top_p" if model_loaded else "Fixed high-quality responses",
|
339 |
"Natural language understanding"
|
340 |
],
|
341 |
+
"version": "4.1.0",
|
342 |
+
"type": "Real LLM Model" if model_loaded else "Smart Fallback Mode"
|
343 |
}
|
344 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
if __name__ == "__main__":
|
346 |
# For Hugging Face Spaces
|
347 |
port = int(os.getenv("PORT", "7860"))
|