Spaces:
Running
Running
Upload model_config.py with huggingface_hub
Browse files- model_config.py +208 -0
model_config.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
+
import logging
|
5 |
+
|
6 |
+
logger = logging.getLogger(__name__)
|
7 |
+
|
8 |
+
class ModelConfig:
|
9 |
+
"""Configuration for different LLM models optimized for Hugging Face Spaces"""
|
10 |
+
|
11 |
+
MODELS = {
|
12 |
+
"dialogpt-medium": {
|
13 |
+
"name": "microsoft/DialoGPT-medium",
|
14 |
+
"description": "Conversational AI model, good for chat",
|
15 |
+
"max_length": 512,
|
16 |
+
"memory_usage": "medium",
|
17 |
+
"recommended_for": "chat, conversation"
|
18 |
+
},
|
19 |
+
"dialogpt-small": {
|
20 |
+
"name": "microsoft/DialoGPT-small",
|
21 |
+
"description": "Smaller conversational model, faster inference",
|
22 |
+
"max_length": 256,
|
23 |
+
"memory_usage": "low",
|
24 |
+
"recommended_for": "quick responses, limited resources"
|
25 |
+
},
|
26 |
+
"gpt2": {
|
27 |
+
"name": "gpt2",
|
28 |
+
"description": "General purpose text generation",
|
29 |
+
"max_length": 1024,
|
30 |
+
"memory_usage": "medium",
|
31 |
+
"recommended_for": "text generation, creative writing"
|
32 |
+
},
|
33 |
+
"distilgpt2": {
|
34 |
+
"name": "distilgpt2",
|
35 |
+
"description": "Distilled GPT-2, faster and smaller",
|
36 |
+
"max_length": 512,
|
37 |
+
"memory_usage": "low",
|
38 |
+
"recommended_for": "fast inference, resource constrained"
|
39 |
+
},
|
40 |
+
"flan-t5-small": {
|
41 |
+
"name": "google/flan-t5-small",
|
42 |
+
"description": "Instruction-tuned T5 model",
|
43 |
+
"max_length": 512,
|
44 |
+
"memory_usage": "low",
|
45 |
+
"recommended_for": "instruction following, Q&A"
|
46 |
+
}
|
47 |
+
}
|
48 |
+
|
49 |
+
@classmethod
|
50 |
+
def get_model_info(cls, model_key: str = None):
|
51 |
+
"""Get information about available models"""
|
52 |
+
if model_key:
|
53 |
+
return cls.MODELS.get(model_key)
|
54 |
+
return cls.MODELS
|
55 |
+
|
56 |
+
@classmethod
|
57 |
+
def get_recommended_model(cls, use_case: str = "general"):
|
58 |
+
"""Get recommended model based on use case"""
|
59 |
+
recommendations = {
|
60 |
+
"chat": "dialogpt-medium",
|
61 |
+
"fast": "distilgpt2",
|
62 |
+
"general": "gpt2",
|
63 |
+
"qa": "flan-t5-small",
|
64 |
+
"low_memory": "dialogpt-small"
|
65 |
+
}
|
66 |
+
return recommendations.get(use_case, "dialogpt-medium")
|
67 |
+
|
68 |
+
class ModelManager:
|
69 |
+
"""Manages model loading and inference"""
|
70 |
+
|
71 |
+
def __init__(self, model_name: str = None):
|
72 |
+
self.model_name = model_name or os.getenv("MODEL_NAME", "microsoft/DialoGPT-medium")
|
73 |
+
self.model = None
|
74 |
+
self.tokenizer = None
|
75 |
+
self.pipeline = None
|
76 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
77 |
+
self.loaded = False
|
78 |
+
|
79 |
+
def load_model(self):
|
80 |
+
"""Load the specified model"""
|
81 |
+
try:
|
82 |
+
logger.info(f"Loading model: {self.model_name}")
|
83 |
+
logger.info(f"Using device: {self.device}")
|
84 |
+
|
85 |
+
# Load tokenizer
|
86 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
87 |
+
self.model_name,
|
88 |
+
padding_side="left"
|
89 |
+
)
|
90 |
+
|
91 |
+
# Add padding token if it doesn't exist
|
92 |
+
if self.tokenizer.pad_token is None:
|
93 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
94 |
+
|
95 |
+
# Load model with optimizations
|
96 |
+
model_kwargs = {
|
97 |
+
"low_cpu_mem_usage": True,
|
98 |
+
"torch_dtype": torch.float16 if self.device == "cuda" else torch.float32,
|
99 |
+
}
|
100 |
+
|
101 |
+
if self.device == "cuda":
|
102 |
+
model_kwargs["device_map"] = "auto"
|
103 |
+
|
104 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
105 |
+
self.model_name,
|
106 |
+
**model_kwargs
|
107 |
+
)
|
108 |
+
|
109 |
+
# Move to device if not using device_map
|
110 |
+
if self.device == "cpu":
|
111 |
+
self.model = self.model.to(self.device)
|
112 |
+
|
113 |
+
# Create pipeline
|
114 |
+
self.pipeline = pipeline(
|
115 |
+
"text-generation",
|
116 |
+
model=self.model,
|
117 |
+
tokenizer=self.tokenizer,
|
118 |
+
device=0 if self.device == "cuda" else -1,
|
119 |
+
return_full_text=False
|
120 |
+
)
|
121 |
+
|
122 |
+
self.loaded = True
|
123 |
+
logger.info("Model loaded successfully!")
|
124 |
+
|
125 |
+
except Exception as e:
|
126 |
+
logger.error(f"Error loading model: {str(e)}")
|
127 |
+
raise e
|
128 |
+
|
129 |
+
def generate_response(self,
|
130 |
+
prompt: str,
|
131 |
+
max_length: int = 100,
|
132 |
+
temperature: float = 0.7,
|
133 |
+
top_p: float = 0.9,
|
134 |
+
do_sample: bool = True) -> str:
|
135 |
+
"""Generate response using the loaded model"""
|
136 |
+
|
137 |
+
if not self.loaded:
|
138 |
+
raise RuntimeError("Model not loaded. Call load_model() first.")
|
139 |
+
|
140 |
+
try:
|
141 |
+
# Generate response
|
142 |
+
outputs = self.pipeline(
|
143 |
+
prompt,
|
144 |
+
max_new_tokens=max_length,
|
145 |
+
temperature=temperature,
|
146 |
+
top_p=top_p,
|
147 |
+
do_sample=do_sample,
|
148 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
149 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
150 |
+
truncation=True
|
151 |
+
)
|
152 |
+
|
153 |
+
# Extract generated text
|
154 |
+
if outputs and len(outputs) > 0:
|
155 |
+
generated_text = outputs[0]['generated_text']
|
156 |
+
return generated_text.strip()
|
157 |
+
else:
|
158 |
+
return "Sorry, I couldn't generate a response."
|
159 |
+
|
160 |
+
except Exception as e:
|
161 |
+
logger.error(f"Error generating response: {str(e)}")
|
162 |
+
raise e
|
163 |
+
|
164 |
+
def get_model_info(self):
|
165 |
+
"""Get information about the loaded model"""
|
166 |
+
return {
|
167 |
+
"model_name": self.model_name,
|
168 |
+
"device": self.device,
|
169 |
+
"loaded": self.loaded,
|
170 |
+
"tokenizer_vocab_size": len(self.tokenizer) if self.tokenizer else None,
|
171 |
+
"model_parameters": sum(p.numel() for p in self.model.parameters()) if self.model else None
|
172 |
+
}
|
173 |
+
|
174 |
+
def unload_model(self):
|
175 |
+
"""Unload the model to free memory"""
|
176 |
+
if self.model:
|
177 |
+
del self.model
|
178 |
+
self.model = None
|
179 |
+
if self.tokenizer:
|
180 |
+
del self.tokenizer
|
181 |
+
self.tokenizer = None
|
182 |
+
if self.pipeline:
|
183 |
+
del self.pipeline
|
184 |
+
self.pipeline = None
|
185 |
+
|
186 |
+
# Clear CUDA cache if using GPU
|
187 |
+
if torch.cuda.is_available():
|
188 |
+
torch.cuda.empty_cache()
|
189 |
+
|
190 |
+
self.loaded = False
|
191 |
+
logger.info("Model unloaded successfully")
|
192 |
+
|
193 |
+
# Global model manager instance
|
194 |
+
model_manager = None
|
195 |
+
|
196 |
+
def get_model_manager(model_name: str = None) -> ModelManager:
|
197 |
+
"""Get or create the global model manager instance"""
|
198 |
+
global model_manager
|
199 |
+
if model_manager is None:
|
200 |
+
model_manager = ModelManager(model_name)
|
201 |
+
return model_manager
|
202 |
+
|
203 |
+
def initialize_model(model_name: str = None):
|
204 |
+
"""Initialize and load the model"""
|
205 |
+
manager = get_model_manager(model_name)
|
206 |
+
if not manager.loaded:
|
207 |
+
manager.load_model()
|
208 |
+
return manager
|