import os import logging from typing import Optional from datetime import datetime from fastapi import FastAPI, HTTPException, Depends, Security, status from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel, Field import uvicorn # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Initialize FastAPI app app = FastAPI( title="LLM AI Agent API", description="Secure AI Agent API with Local LLM deployment", version="1.0.0" ) # CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Security security = HTTPBearer() # Configuration API_KEYS = { os.getenv("API_KEY_1", "27Eud5J73j6SqPQAT2ioV-CtiCg-p0WNqq6I4U0Ig6E"): "user1", os.getenv("API_KEY_2", "QbzG2CqHU1Nn6F1EogZ1d3dp8ilRTMJQBwTJDQBzS-U"): "user2", } # Global variables for model model = None tokenizer = None model_loaded = False # Request/Response models class ChatRequest(BaseModel): message: str = Field(..., min_length=1, max_length=1000) max_length: Optional[int] = Field(100, ge=10, le=500) temperature: Optional[float] = Field(0.7, ge=0.1, le=2.0) class ChatResponse(BaseModel): response: str model_used: str timestamp: str processing_time: float class HealthResponse(BaseModel): status: str model_loaded: bool timestamp: str def verify_api_key(credentials: HTTPAuthorizationCredentials = Security(security)) -> str: """Verify API key authentication""" api_key = credentials.credentials if api_key not in API_KEYS: raise HTTPException( status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API key" ) return API_KEYS[api_key] @app.on_event("startup") async def load_model(): """Load the LLM model on startup""" global model, tokenizer, model_loaded try: logger.info("Loading model...") # Try to import and load transformers try: from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import torch model_name = os.getenv("MODEL_NAME", "microsoft/DialoGPT-small") logger.info(f"Loading model: {model_name}") # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # Load model model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float32, # Use float32 for compatibility low_cpu_mem_usage=True ) model_loaded = True logger.info("Model loaded successfully!") except Exception as e: logger.warning(f"Could not load transformers model: {e}") logger.info("Running in demo mode with simple responses") model_loaded = False except Exception as e: logger.error(f"Error during startup: {str(e)}") model_loaded = False @app.get("/", response_model=HealthResponse) async def root(): """Health check endpoint""" return HealthResponse( status="healthy", model_loaded=model_loaded, timestamp=datetime.now().isoformat() ) @app.get("/health", response_model=HealthResponse) async def health_check(): """Detailed health check""" return HealthResponse( status="healthy" if model_loaded else "demo_mode", model_loaded=model_loaded, timestamp=datetime.now().isoformat() ) @app.post("/chat", response_model=ChatResponse) async def chat( request: ChatRequest, user: str = Depends(verify_api_key) ): """Main chat endpoint for AI agent interaction""" start_time = datetime.now() try: if model_loaded and model is not None and tokenizer is not None: # Use actual model from transformers import pipeline generator = pipeline( "text-generation", model=model, tokenizer=tokenizer, device=-1 # Use CPU ) # Generate response generated = generator( request.message, max_length=request.max_length, temperature=request.temperature, do_sample=True, pad_token_id=tokenizer.eos_token_id, num_return_sequences=1 ) response_text = generated[0]['generated_text'] if request.message in response_text: response_text = response_text.replace(request.message, "").strip() model_used = os.getenv("MODEL_NAME", "microsoft/DialoGPT-small") else: # Demo mode - simple responses demo_responses = { "hello": "Hello! I'm your AI assistant. How can I help you today?", "hi": "Hi there! I'm ready to assist you.", "how are you": "I'm doing well, thank you for asking! How can I help you?", "what is ai": "AI (Artificial Intelligence) is the simulation of human intelligence in machines that are programmed to think and learn.", "machine learning": "Machine learning is a subset of AI that enables computers to learn and improve from experience without being explicitly programmed.", "default": "I'm an AI assistant ready to help you. Could you please rephrase your question?" } message_lower = request.message.lower() response_text = demo_responses.get("default", "I'm here to help!") for key, response in demo_responses.items(): if key in message_lower: response_text = response break model_used = "demo_mode" # Calculate processing time processing_time = (datetime.now() - start_time).total_seconds() return ChatResponse( response=response_text, model_used=model_used, timestamp=datetime.now().isoformat(), processing_time=processing_time ) except Exception as e: logger.error(f"Error generating response: {str(e)}") raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=f"Error generating response: {str(e)}" ) @app.get("/models") async def get_model_info(user: str = Depends(verify_api_key)): """Get information about the loaded model""" return { "model_name": os.getenv("MODEL_NAME", "microsoft/DialoGPT-small"), "model_loaded": model_loaded, "status": "loaded" if model_loaded else "demo_mode" } if __name__ == "__main__": # For local development and Hugging Face Spaces port = int(os.getenv("PORT", "7860")) uvicorn.run( "app_simple:app", host="0.0.0.0", port=port, reload=False )