File size: 5,382 Bytes
10e9b7d
 
eccf8e4
c8461ca
3c4371f
c8461ca
 
 
10e9b7d
e80aab9
3db6293
e80aab9
c8461ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
c8461ca
 
 
 
 
ee2d2fa
c8461ca
 
 
 
 
dc2edb0
c8461ca
 
 
 
8601660
c8461ca
 
 
8601660
c8461ca
8601660
0b2a728
c8461ca
dc2edb0
c8461ca
7e4a06b
dc2edb0
7e4a06b
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
31243f4
c8461ca
31243f4
 
dc2edb0
36ed51a
3c4371f
eccf8e4
31243f4
7d65c66
31243f4
7d65c66
dc2edb0
e80aab9
7d65c66
 
31243f4
 
 
c8461ca
 
 
 
 
 
 
31243f4
 
c8461ca
31243f4
c8461ca
7d65c66
 
31243f4
dc2edb0
31243f4
 
 
 
7d65c66
e80aab9
 
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
dc2edb0
7d65c66
dc2edb0
e80aab9
c8461ca
e80aab9
c8461ca
dc2edb0
e514fd7
dc2edb0
 
 
 
7e4a06b
31243f4
9088b99
7d65c66
c8461ca
e80aab9
 
dc2edb0
c8461ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
import gradio as gr
import requests
from smolagents import HfApiModel, DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool
import pandas as pd
import tempfile
from pathlib import Path
import re

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- File Handling ---
def download_file_if_any(base_api_url: str, task_id: str) -> str | None:
    url = f"{base_api_url}/files/{task_id}"
    try:
        resp = requests.get(url, timeout=30)
        if resp.status_code == 404:
            return None
        resp.raise_for_status()
    except requests.exceptions.HTTPError as e:
        raise e
    cdisp = resp.headers.get("content-disposition", "")
    filename = task_id
    if "filename=" in cdisp:
        m = re.search(r'filename="([^\"]+)"', cdisp)
        if m:
            filename = m.group(1)
    tmp_dir = Path(tempfile.gettempdir()) / "gaia_files"
    tmp_dir.mkdir(exist_ok=True)
    file_path = tmp_dir / filename
    with open(file_path, "wb") as f:
        f.write(resp.content)
    return str(file_path)

# --- Basic Agent Definition ---
class BasicAgent:
    def __init__(self):
        model = HfApiModel(
            model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
            max_tokens=2096,
            temperature=0.5,
            custom_role_conversions=None,
        )
        self.agent = CodeAgent(
            model=model,
            tools=[DuckDuckGoSearchTool(), WikipediaSearchTool()],
            add_base_tools=True,
            additional_authorized_imports=[]
        )
        print("BasicAgent initialized.")

    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        try:
            fixed_answer = self.agent.run(question)
            print(f"Agent returning answer: {fixed_answer}")
            return fixed_answer
        except Exception as e:
            print(f"Error during inference: {e}")
            return f"AGENT ERROR: {e}"

# --- Run and Submit ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    space_id = "l3xv/Final_Assignment_Template"
    if profile:
        username = f"{profile.username}"
    else:
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = BasicAgent()
    except Exception as e:
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
    except Exception as e:
        return f"Error fetching questions: {e}", None

    results_log = []
    answers_payload = []
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        try:
            file_path = download_file_if_any(api_url, task_id)
        except Exception as e:
            file_path = None

        q_for_agent = f"{question_text}\n\n---\nFile: {file_path}\n---\n" if file_path else question_text

        if not task_id or question_text is None:
            continue

        try:
            submitted_answer = agent(q_for_agent)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}

    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        return final_status, pd.DataFrame(results_log)
    except Exception as e:
        return f"Submission Failed: {e}", pd.DataFrame(results_log)

# --- UI ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown("""
        **Instructions:**
        1. Log in to your Hugging Face account.
        2. Click the button to run the agent and submit answers.
        3. Your score will be printed below.
    """)
    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])

if __name__ == "__main__":
    print("Launching GAIA agent app...")
    demo.launch(debug=True, share=False)