File size: 40,761 Bytes
9d4bd7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 |
# service.py
from typing import List, Optional, Dict, Any
from decimal import Decimal
from datetime import date, datetime, timezone # Added timezone
from tortoise.exceptions import DoesNotExist
from tortoise.transactions import in_transaction
from App.schemas import AppException # Assuming AppException is in App.schemas
from .models import (
Portfolio,
PortfolioStock,
PortfolioUTT,
PortfolioBond,
PortfolioTransaction,
PortfolioCalendar,
PortfolioSnapshot,
)
# Assuming models for stocks, utts, bonds are in these paths
from ..stocks.models import Stock, StockPriceData
from ..utt.models import UTTFund, UTTFundData
from ..bonds.models import (
Bond,
) # Assuming Bond model might have price_per_100 or similar
# Import Pydantic schemas
from .schemas import (
PortfolioSummary,
StockHoldingResponse,
UTTHoldingResponse,
BondHoldingResponse,
AssetAllocation,
PortfolioBase,
TransactionResponse,
CalendarEventResponse, # Added PortfolioBase and other response schemas
)
from App.routers.tasks.models import ImportTask
from datetime import date, timedelta
from tortoise.expressions import Q
from typing import List, Generator
def _calculate_bond_coupon_dates(
bond: Bond, start_date: date, end_date: date
) -> Generator[date, None, None]:
"""
Calculates the semi-annual coupon payment dates for a bond within a given date range.
This makes a common assumption that coupon payments occur semi-annually,
with one payment on the maturity month/day and the other 6 months apart.
"""
if bond.maturity_date and bond.coupon_rate > 0:
# First coupon payment month and day
month1 = bond.maturity_date.month
day1 = bond.maturity_date.day
# Second coupon payment is 6 months from the first
month2 = (
month1 + 5
) % 12 + 1 # +5 then %12 handles the 6-month offset correctly
# Iterate through years from the bond's issue to maturity
for year in range(bond.effective_date.year, bond.maturity_date.year + 1):
try:
# Construct the two potential coupon dates for the year
coupon_date1 = date(year, month1, day1)
coupon_date2 = date(year, month2, day1) # Day is assumed the same
# Yield the date if it falls within the user's requested filter range
if start_date <= coupon_date1 <= end_date:
yield coupon_date1
if start_date <= coupon_date2 <= end_date:
yield coupon_date2
except ValueError:
# Handles cases like Feb 29 on a non-leap year, just skip that invalid date.
continue
class PortfolioService:
@staticmethod
async def get_user_portfolios(
user_id: int, include_inactive: bool = False
) -> List[Portfolio]:
"""Get all portfolios for a user"""
query = Portfolio.filter(user_id=user_id)
if not include_inactive:
query = query.filter(is_active=True)
return await query.order_by("-created_at").all()
@staticmethod
async def create_portfolio(
user_id: int, name: str, description: Optional[str] = None
) -> Portfolio:
"""Create a new portfolio for user"""
return await Portfolio.create(
user_id=user_id, name=name, description=description
)
@staticmethod
async def get_portfolio_summary(portfolio_id: int) -> PortfolioSummary:
"""Get comprehensive portfolio summary with all holdings and calculations"""
portfolio_orm = await Portfolio.get_or_none(id=portfolio_id)
if not portfolio_orm:
raise DoesNotExist("Portfolio not found")
# Get all holdings with calculated values
stock_holdings_resp = await PortfolioService._get_stock_holdings_with_values(
portfolio_id
)
utt_holdings_resp = await PortfolioService._get_utt_holdings_with_values(
portfolio_id
)
bond_holdings_resp = await PortfolioService._get_bond_holdings_with_values(
portfolio_id
)
# Calculate total market values
total_stock_value = sum(
h.market_value or Decimal("0") for h in stock_holdings_resp
)
total_utt_value = sum(
Decimal(h.market_value) or Decimal("0") for h in utt_holdings_resp
)
total_bond_value = sum(
Decimal(h.market_value) or Decimal("0") for h in bond_holdings_resp
)
total_market_value = total_stock_value + total_utt_value + total_bond_value
# Calculate total cost basis
# For stocks/UTTs, purchase_price is average unit price on the aggregated holding.
total_stock_cost = sum(
h.purchase_price * h.quantity for h in stock_holdings_resp
)
total_utt_cost = sum(h.purchase_price * h.units_held for h in utt_holdings_resp)
# For bonds, BondHoldingResponse.purchase_price is the *total* purchase cost for that aggregated holding.
total_bond_cost = sum(h.purchase_price for h in bond_holdings_resp)
total_cost_basis = total_stock_cost + total_utt_cost + total_bond_cost
# Calculate overall gains/losses
overall_unrealized_gain_loss = total_market_value - total_cost_basis
overall_unrealized_gain_loss_percentage = (
(overall_unrealized_gain_loss / total_cost_basis * Decimal("100"))
if total_cost_basis > 0
else Decimal("0")
)
# Get recent transactions
recent_transactions_orm = (
await PortfolioTransaction.filter(portfolio_id=portfolio_id)
.order_by("-transaction_date", "-created_at")
.limit(10)
.all()
)
recent_transactions_resp = [
TransactionResponse.from_orm(t) for t in recent_transactions_orm
]
# Get upcoming events
upcoming_events_orm = (
await PortfolioCalendar.filter(
portfolio_id=portfolio_id,
event_date__gte=date.today(),
is_completed=False,
)
.order_by("event_date")
.limit(10)
.all()
)
upcoming_events_resp = [
CalendarEventResponse.from_orm(e) for e in upcoming_events_orm
]
# Asset allocation
asset_alloc = AssetAllocation(
stocks_percentage=(
(total_stock_value / total_market_value * Decimal("100"))
if total_market_value > 0
else Decimal("0")
),
bonds_percentage=(
(total_bond_value / total_market_value * Decimal("100"))
if total_market_value > 0
else Decimal("0")
),
utts_percentage=(
(total_utt_value / total_market_value * Decimal("100"))
if total_market_value > 0
else Decimal("0")
),
cash_percentage=Decimal(
"0"
), # Assuming cash is not directly tracked here yet
total_value=total_market_value,
)
portfolio_base = PortfolioBase.from_orm(portfolio_orm)
return PortfolioSummary(
portfolio=portfolio_base,
total_market_value=total_market_value,
total_cost_basis=total_cost_basis,
overall_unrealized_gain_loss=overall_unrealized_gain_loss,
overall_unrealized_gain_loss_percentage=overall_unrealized_gain_loss_percentage,
stock_holdings=stock_holdings_resp,
utt_holdings=utt_holdings_resp,
bond_holdings=bond_holdings_resp,
asset_allocation=asset_alloc,
recent_transactions=recent_transactions_resp,
upcoming_events=upcoming_events_resp,
)
@staticmethod
async def _get_stock_holdings_with_values(
portfolio_id: int,
) -> List[StockHoldingResponse]:
holdings_orm = (
await PortfolioStock.filter(portfolio_id=portfolio_id)
.prefetch_related("stock")
.all()
)
results = []
for holding in holdings_orm: # holding is now an aggregated record
latest_price_data = (
await StockPriceData.filter(stock_id=holding.stock_id)
.order_by("-date")
.first()
)
current_price = (
latest_price_data.closing_price if latest_price_data else None
)
market_value = (
(current_price * holding.quantity)
if current_price is not None
else None
)
# holding.purchase_price is average unit price
cost_basis = holding.purchase_price * holding.quantity
gain_loss = (
(market_value - cost_basis) if market_value is not None else None
)
gain_loss_percentage = (
(gain_loss / cost_basis * Decimal("100"))
if gain_loss is not None and cost_basis > 0
else None
)
results.append(
StockHoldingResponse(
id=holding.id, # This ID is of the PortfolioStock record itself
stock_id=holding.stock.id,
stock_symbol=holding.stock.symbol,
stock_name=holding.stock.name,
quantity=holding.quantity,
purchase_price=holding.purchase_price, # Average unit purchase price
purchase_date=holding.purchase_date, # Date of first/last buy or as defined
current_price=current_price,
market_value=market_value,
gain_loss=gain_loss,
gain_loss_percentage=gain_loss_percentage,
notes=holding.notes,
created_at=holding.created_at,
)
)
return results
@staticmethod
async def _get_utt_holdings_with_values(
portfolio_id: int,
) -> List[UTTHoldingResponse]:
holdings_orm = (
await PortfolioUTT.filter(portfolio_id=portfolio_id)
.prefetch_related("utt_fund")
.all()
)
results = []
for holding in holdings_orm: # holding is now an aggregated record
latest_nav_data = (
await UTTFundData.filter(fund_id=holding.utt_fund_id)
.order_by("-date")
.first()
)
current_nav = latest_nav_data.nav_per_unit if latest_nav_data else None
market_value = (
(Decimal(current_nav) * holding.units_held)
if current_nav is not None
else None
)
# holding.purchase_price is average unit price
cost_basis = holding.purchase_price * holding.units_held
gain_loss = (
(market_value - cost_basis) if market_value is not None else None
)
gain_loss_percentage = (
(gain_loss / cost_basis * Decimal("100"))
if gain_loss is not None and cost_basis > 0
else None
)
results.append(
UTTHoldingResponse(
id=holding.id, # This ID is of the PortfolioUTT record itself
utt_fund_id=holding.utt_fund.id,
fund_symbol=holding.utt_fund.symbol,
fund_name=holding.utt_fund.name,
units_held=holding.units_held,
purchase_price=holding.purchase_price, # Average unit purchase price
purchase_date=holding.purchase_date, # Date of first/last buy or as defined
current_nav=current_nav,
market_value=market_value,
gain_loss=gain_loss,
gain_loss_percentage=gain_loss_percentage,
notes=holding.notes,
created_at=holding.created_at,
)
)
return results
@staticmethod
async def _get_bond_holdings_with_values(
portfolio_id: int,
) -> List[BondHoldingResponse]:
holdings_orm = (
await PortfolioBond.filter(portfolio_id=portfolio_id)
.prefetch_related("bond")
.all()
)
results = []
for holding in holdings_orm: # holding is now an aggregated record
current_price_percentage = (
holding.bond.price_per_100
if hasattr(holding.bond, "price_per_100") and holding.bond.price_per_100
else Decimal("100")
)
market_value = Decimal(
holding.face_value_held * current_price_percentage
) / Decimal("100")
# print(f"cu")
# holding.purchase_price on PortfolioBond model is the TOTAL cost of this aggregated holding
cost_basis = holding.purchase_price
gain_loss = (
(market_value - cost_basis) if market_value is not None else None
)
results.append(
BondHoldingResponse(
id=holding.id, # This ID is of the PortfolioBond record itself
bond_id=holding.bond.id,
instrument_type=holding.bond.instrument_type,
auction_number=(
holding.bond.auction_number
if hasattr(holding.bond, "auction_number")
else None
),
maturity_date=holding.bond.maturity_date,
face_value_held=holding.face_value_held,
purchase_price=cost_basis, # Reporting total purchase price of this holding
purchase_date=holding.purchase_date, # Date of first/last buy or as defined
current_price=current_price_percentage,
market_value=market_value,
accrued_interest=None,
yield_to_maturity=None,
gain_loss=gain_loss,
notes=holding.notes,
created_at=holding.created_at,
)
)
return results
@staticmethod
async def add_stock_to_portfolio(
portfolio_id: int,
stock_id: int,
quantity_to_add: Decimal, # Quantity for this specific purchase
purchase_price_of_lot: Decimal, # Unit price for this specific purchase
purchase_date: date,
notes: Optional[str] = None,
) -> PortfolioStock:
stock_obj = await Stock.get_or_none(id=stock_id)
if not stock_obj:
raise DoesNotExist("Stock not found")
if quantity_to_add <= 0:
raise AppException(
status_code=400, detail="Quantity to add must be positive."
)
async with in_transaction():
holding = await PortfolioStock.get_or_none(
portfolio_id=portfolio_id, stock_id=stock_id
)
if holding:
# Update existing aggregated holding
new_total_cost = (holding.quantity * holding.purchase_price) + (
quantity_to_add * purchase_price_of_lot
)
holding.quantity += quantity_to_add
if holding.quantity > 0:
holding.purchase_price = (
new_total_cost / holding.quantity
) # New average price
else: # Should not happen if quantity_to_add is positive
holding.purchase_price = purchase_price_of_lot
holding.purchase_date = purchase_date # Update to latest purchase_date
if notes:
holding.notes = (
f"{holding.notes}\n{notes}".strip() if holding.notes else notes
)
await holding.save()
else:
# Create new holding
holding = await PortfolioStock.create(
portfolio_id=portfolio_id,
stock=stock_obj,
quantity=quantity_to_add,
purchase_price=purchase_price_of_lot, # Initial average price is this lot's price
purchase_date=purchase_date,
notes=notes,
)
await PortfolioTransaction.create(
portfolio_id=portfolio_id,
transaction_type="BUY",
asset_type="STOCK",
asset_id=stock_obj.id,
asset_name=stock_obj.symbol,
quantity=quantity_to_add,
price=purchase_price_of_lot,
total_amount=quantity_to_add * purchase_price_of_lot,
transaction_date=purchase_date,
notes=notes or f"Bought {quantity_to_add} shares of {stock_obj.symbol}",
)
return holding
@staticmethod
async def sell_stock_holding(
portfolio_id: int,
stock_id: int, # This is the asset_id
quantity_to_sell: Decimal,
sell_price: Decimal,
sell_date: date,
notes: Optional[str] = None,
) -> PortfolioTransaction:
# Fetch the stock object to ensure it exists (optional, but good practice)
# stock_obj = await Stock.get_or_none(id=stock_id)
# if not stock_obj:
# raise DoesNotExist("Stock definition not found.")
# Fetch the aggregated holding by portfolio_id and stock_id
holding = await PortfolioStock.get_or_none(
portfolio_id=portfolio_id, stock_id=stock_id
).prefetch_related(
"stock"
) # prefetch_related is good if you need stock.symbol etc.
if not holding:
raise DoesNotExist("Stock holding not found in this portfolio.")
if quantity_to_sell <= 0:
raise AppException(
status_code=400, detail="Quantity to sell must be positive."
)
if holding.quantity < quantity_to_sell:
raise AppException(
status_code=400,
detail=f"Not enough shares to sell. Currently hold {holding.quantity}, trying to sell {quantity_to_sell}.",
)
async with in_transaction():
transaction = await PortfolioTransaction.create(
portfolio_id=portfolio_id,
transaction_type="SELL",
asset_type="STOCK",
asset_id=holding.stock.id, # stock_id
asset_name=holding.stock.symbol,
quantity=quantity_to_sell,
price=sell_price,
total_amount=quantity_to_sell * sell_price,
transaction_date=sell_date,
notes=notes
or f"Sold {quantity_to_sell} shares of {holding.stock.symbol}",
)
holding.quantity -= quantity_to_sell
# The average purchase_price of the holding does not change upon selling.
if holding.quantity == 0:
await holding.delete()
else:
await holding.save()
return transaction
@staticmethod
async def add_utt_to_portfolio(
portfolio_id: int,
utt_fund_id: int,
units_to_add: Decimal, # Units for this specific purchase
purchase_price_of_lot: Decimal, # Unit price for this specific purchase
purchase_date: date,
notes: Optional[str] = None,
) -> PortfolioUTT:
utt_fund_obj = await UTTFund.get_or_none(id=utt_fund_id)
if not utt_fund_obj:
raise DoesNotExist("UTT Fund not found")
if units_to_add <= 0:
raise AppException(status_code=400, detail="Units to add must be positive.")
async with in_transaction():
holding = await PortfolioUTT.get_or_none(
portfolio_id=portfolio_id, utt_fund_id=utt_fund_id
)
if holding:
# Update existing aggregated holding
new_total_cost = (holding.units_held * holding.purchase_price) + (
units_to_add * purchase_price_of_lot
)
holding.units_held += units_to_add
if holding.units_held > 0:
holding.purchase_price = (
new_total_cost / holding.units_held
) # New average price
else:
holding.purchase_price = purchase_price_of_lot
holding.purchase_date = purchase_date # Update to latest purchase_date
if notes:
holding.notes = (
f"{holding.notes}\n{notes}".strip() if holding.notes else notes
)
await holding.save()
else:
# Create new holding
holding = await PortfolioUTT.create(
portfolio_id=portfolio_id,
utt_fund=utt_fund_obj,
units_held=units_to_add,
purchase_price=purchase_price_of_lot, # Initial average price
purchase_date=purchase_date,
notes=notes,
)
await PortfolioTransaction.create(
portfolio_id=portfolio_id,
transaction_type="BUY",
asset_type="UTT",
asset_id=utt_fund_obj.id,
asset_name=utt_fund_obj.symbol,
quantity=units_to_add,
price=purchase_price_of_lot,
total_amount=units_to_add * purchase_price_of_lot,
transaction_date=purchase_date,
notes=notes or f"Bought {units_to_add} units of {utt_fund_obj.symbol}",
)
return holding
@staticmethod
async def sell_utt_holding(
portfolio_id: int,
utt_fund_id: int, # Changed from holding_id to asset_id
units_to_sell: Decimal,
sell_price: Decimal,
sell_date: date,
notes: Optional[str] = None,
) -> PortfolioTransaction:
holding = await PortfolioUTT.get_or_none(
portfolio_id=portfolio_id, utt_fund_id=utt_fund_id
).prefetch_related("utt_fund")
if not holding:
raise DoesNotExist("UTT holding not found for this fund in the portfolio.")
if units_to_sell <= 0:
raise AppException(
status_code=400, detail="Units to sell must be positive."
)
if holding.units_held < units_to_sell:
raise AppException(
status_code=400,
detail=f"Not enough units to sell. Currently hold {holding.units_held}, trying to sell {units_to_sell}.",
)
async with in_transaction():
transaction = await PortfolioTransaction.create(
portfolio_id=portfolio_id,
transaction_type="SELL",
asset_type="UTT",
asset_id=holding.utt_fund.id, # This is utt_fund_id
asset_name=holding.utt_fund.symbol,
quantity=units_to_sell,
price=sell_price,
total_amount=units_to_sell * sell_price,
transaction_date=sell_date,
notes=notes
or f"Sold {units_to_sell} units of {holding.utt_fund.symbol}",
)
holding.units_held -= units_to_sell
# Average purchase_price of the holding remains unchanged.
if holding.units_held == 0:
await holding.delete()
else:
await holding.save()
return transaction
@staticmethod
async def add_bond_to_portfolio(
portfolio_id: int,
bond_id: int,
face_value_to_add: Decimal, # Face value for this specific purchase
total_purchase_price_of_lot: Decimal, # TOTAL purchase price for this face_value_to_add
purchase_date: date,
notes: Optional[str] = None,
) -> PortfolioBond:
bond_obj = await Bond.get_or_none(id=bond_id)
if not bond_obj:
raise DoesNotExist("Bond not found")
if face_value_to_add <= 0:
raise AppException(
status_code=400, detail="Face value to add must be positive."
)
async with in_transaction():
holding = await PortfolioBond.get_or_none(
portfolio_id=portfolio_id, bond_id=bond_id
)
if holding:
# Update existing aggregated holding
holding.face_value_held += face_value_to_add
holding.purchase_price += (
total_purchase_price_of_lot # Add total cost to existing total cost
)
holding.purchase_date = purchase_date # Update to latest purchase_date
if notes:
holding.notes = (
f"{holding.notes}\n{notes}".strip() if holding.notes else notes
)
await holding.save()
else:
# Create new holding
holding = await PortfolioBond.create(
portfolio_id=portfolio_id,
bond=bond_obj,
face_value_held=face_value_to_add,
purchase_price=total_purchase_price_of_lot, # Storing total cost for this initial lot
purchase_date=purchase_date,
notes=notes,
)
unit_price_for_transaction = (
total_purchase_price_of_lot / face_value_to_add
if face_value_to_add > 0
else Decimal("0")
)
await PortfolioTransaction.create(
portfolio_id=portfolio_id,
transaction_type="BUY",
asset_type="BOND",
asset_id=bond_obj.id,
asset_name=f"Bond {bond_obj.auction_number or bond_obj.id}",
quantity=face_value_to_add,
price=unit_price_for_transaction,
total_amount=total_purchase_price_of_lot,
transaction_date=purchase_date,
notes=notes
or f"Bought {face_value_to_add} face value of Bond {bond_obj.auction_number or bond_obj.id}",
)
return holding
@staticmethod
async def sell_bond_holding(
portfolio_id: int,
bond_id: int, # Changed from holding_id to asset_id
face_value_to_sell: Decimal,
sell_price_total: Decimal, # This is TOTAL proceeds for the face_value_to_sell
sell_date: date,
notes: Optional[str] = None,
) -> PortfolioTransaction:
holding = await PortfolioBond.get_or_none(
portfolio_id=portfolio_id, bond_id=bond_id
).prefetch_related("bond")
if not holding:
raise DoesNotExist("Bond holding not found for this bond in the portfolio.")
if face_value_to_sell <= 0:
raise AppException(
status_code=400, detail="Face value to sell must be positive."
)
if holding.face_value_held < face_value_to_sell:
raise AppException(
status_code=400,
detail=f"Not enough face value to sell. Currently hold {holding.face_value_held}, trying to sell {face_value_to_sell}.",
)
async with in_transaction():
unit_sell_price = (
sell_price_total / face_value_to_sell
if face_value_to_sell > 0
else Decimal("0")
)
transaction = await PortfolioTransaction.create(
portfolio_id=portfolio_id,
transaction_type="SELL",
asset_type="BOND",
asset_id=holding.bond.id, # This is bond_id
asset_name=f"Bond {holding.bond.auction_number or holding.bond.id}",
quantity=face_value_to_sell,
price=unit_sell_price,
total_amount=sell_price_total,
transaction_date=sell_date,
notes=notes
or f"Sold {face_value_to_sell} face value of Bond {holding.bond.auction_number or holding.bond.id}",
)
original_face_value_held = holding.face_value_held
original_total_purchase_price = holding.purchase_price
holding.face_value_held -= face_value_to_sell
if holding.face_value_held == Decimal(
"0"
): # Ensure exact zero comparison for Decimal
await holding.delete()
else:
# Update the total purchase_price proportionally for the remaining face_value_held
if original_face_value_held > 0:
holding.purchase_price = (
holding.face_value_held / original_face_value_held
) * original_total_purchase_price
else:
holding.purchase_price = Decimal(
"0"
) # Should not be reached if logic is correct
await holding.save()
return transaction
@staticmethod
async def remove_holding(
portfolio_id: int, asset_type_str: str, asset_id_value: int
) -> bool:
"""
Remove an aggregated holding from portfolio. This is a hard delete.
asset_id_value corresponds to stock_id, utt_fund_id, or bond_id.
"""
model_to_delete = None
asset_id_field_name = None
if asset_type_str.upper() == "STOCK":
model_to_delete = PortfolioStock
asset_id_field_name = "stock_id"
elif asset_type_str.upper() == "UTT":
model_to_delete = PortfolioUTT
asset_id_field_name = "utt_fund_id"
elif asset_type_str.upper() == "BOND":
model_to_delete = PortfolioBond
asset_id_field_name = "bond_id"
else:
raise AppException(
status_code=400, detail=f"Unknown asset type: {asset_type_str}"
)
filter_kwargs = {
"portfolio_id": portfolio_id,
asset_id_field_name: asset_id_value,
}
deleted_count = await model_to_delete.filter(**filter_kwargs).delete()
return deleted_count > 0
@staticmethod
async def create_portfolio_snapshot(
portfolio_id: int, snapshot_date_input: Optional[date] = None
) -> PortfolioSnapshot:
"""
Creates or updates a daily snapshot of portfolio performance for a specific date.
This function correctly calculates historical values by:
1. Determining the holdings that existed in the portfolio on the target_date.
2. Fetching the last known market price for each of those holdings as of the target_date.
3. Aggregating the values to create a point-in-time snapshot.
"""
target_date: date = date.today()
if snapshot_date_input:
if isinstance(snapshot_date_input, datetime):
target_date = snapshot_date_input.date()
else:
target_date = snapshot_date_input
# --- Initialize accumulators ---
total_market_value = Decimal("0.0")
total_cost_basis = Decimal("0.0")
stock_val = Decimal("0.0")
bond_val = Decimal("0.0")
utt_val = Decimal("0.0")
# --- 1. Process Stock Holdings ---
# Get all stock holdings purchased on or before the target date
stock_holdings = await PortfolioStock.filter(
portfolio_id=portfolio_id, purchase_date__lte=target_date
).select_related("stock")
for holding in stock_holdings:
# Find the most recent price for this stock on or before the target_date
price_data = (
await StockPriceData.filter(
stock_id=holding.stock_id, date__lte=target_date
)
.order_by("-date")
.first()
)
if price_data and price_data.closing_price is not None:
holding_market_value = (
Decimal(holding.quantity) * price_data.closing_price
)
stock_val += holding_market_value
# The cost basis is the sum of purchase prices for all holdings that existed at that time
total_cost_basis += holding.purchase_price
# --- 2. Process UTT Holdings ---
utt_holdings = await PortfolioUTT.filter(
portfolio_id=portfolio_id, purchase_date__lte=target_date
).select_related("utt_fund")
for holding in utt_holdings:
# Find the most recent NAV for this fund on or before the target_date
price_data = (
await UTTFundData.filter(
fund_id=holding.utt_fund_id, date__lte=target_date
)
.order_by("-date")
.first()
)
if price_data and price_data.nav_per_unit is not None:
# Safely convert float to Decimal
holding_market_value = holding.units_held * Decimal(
str(price_data.nav_per_unit)
)
utt_val += holding_market_value
total_cost_basis += holding.purchase_price
# --- 3. Process Bond Holdings ---
bond_holdings = await PortfolioBond.filter(
portfolio_id=portfolio_id, purchase_date__lte=target_date
).select_related("bond")
for holding in bond_holdings:
# NOTE: Bond valuation is complex. The current `Bond` model does not store historical prices.
# A simplified valuation is used here: market value is assumed to be the face value.
# For a more advanced system, a separate `BondPriceData` table would be needed.
holding_market_value = Decimal(holding.face_value_held)
bond_val += holding_market_value
total_cost_basis += holding.purchase_price
# --- Aggregate all values ---
total_market_value = stock_val + bond_val + utt_val
unrealized_gain_loss = total_market_value - total_cost_basis
# --- Create or Update the snapshot for the target_date ---
# This prevents duplicate snapshots if the task runs multiple times.
snapshot_datetime = datetime.combine(target_date, datetime.min.time())
snapshot, created = await PortfolioSnapshot.update_or_create(
portfolio_id=portfolio_id,
snapshot_date=snapshot_datetime,
defaults={
"total_value": total_market_value,
"stock_value": stock_val,
"bond_value": bond_val,
"utt_value": utt_val,
"cash_value": Decimal("0.0"), # Assuming cash isn't tracked yet
"total_cost": total_cost_basis,
"unrealized_gain_loss": unrealized_gain_loss,
},
)
if created:
print(f"Created snapshot for portfolio {portfolio_id} on {target_date}")
else:
print(f"Updated snapshot for portfolio {portfolio_id} on {target_date}")
return snapshot
@staticmethod
async def regenerate_snapshots_task(
task_id: int, portfolio_id: int, start_date: date = None
):
"""
A robust background task that generates or regenerates historical portfolio snapshots.
- If a 'start_date' is provided (e.g., from a back-dated transaction), it will start from there.
- If 'start_date' is None, it will intelligently find the date of the very first transaction
in the portfolio and start from that point, ensuring all possible data is generated.
- It always deletes existing snapshots in the target date range before creating new ones
to prevent duplicates and ensure data is fresh.
"""
await ImportTask.filter(id=task_id).update(status="running")
try:
# 1. DETERMINE THE START DATE
# If no specific start date is given, find the earliest transaction for this portfolio.
if not start_date:
first_transaction = (
await PortfolioTransaction.filter(portfolio_id=portfolio_id)
.order_by("transaction_date")
.first()
)
if first_transaction:
start_date = first_transaction.transaction_date
print(
f"[Task {task_id}] No start date provided. Found earliest transaction on {start_date}."
)
else:
# If there are no transactions, there's nothing to snapshot.
await ImportTask.filter(id=task_id).update(
status="completed",
details={
"message": "No transactions found in portfolio. Nothing to generate."
},
)
print(
f"[Task {task_id}] No transactions for portfolio {portfolio_id}. Task complete."
)
return
end_date = date.today()
print(
f"[Task {task_id}] Starting snapshot generation for portfolio {portfolio_id} from {start_date} to {end_date}"
)
# 2. INVALIDATE: Delete all stale snapshots in the date range to ensure a clean slate.
start_datetime = datetime.combine(start_date, datetime.min.time())
deleted_count = await PortfolioSnapshot.filter(
portfolio_id=portfolio_id, snapshot_date__gte=start_datetime
).delete()
print(
f"[Task {task_id}] Invalidated and deleted {deleted_count} stale snapshots."
)
# 3. REGENERATE: Loop from the start date to today and recreate each snapshot.
def date_range(start, end):
# Helper to iterate through a range of dates.
for n in range(int((end - start).days) + 1):
yield start + timedelta(n)
generated_count = 0
failed_days = []
for single_date in date_range(start_date, end_date):
try:
# This calls the other service method responsible for calculating and saving
# a single day's snapshot.
await PortfolioService.create_portfolio_snapshot(
portfolio_id=portfolio_id, snapshot_date_input=single_date
)
print(
f"[Task {task_id}] Successfully generated snapshot for {single_date.isoformat()}"
)
generated_count += 1
except Exception as e:
# If one day fails (e.g., missing price data), log it and continue.
failed_days.append(single_date.isoformat())
print(
f"[Task {task_id}] WARNING: Could not generate snapshot for {single_date}: {e}"
)
# 4. FINALIZE: Update the task with a summary of the operation.
summary = {
"message": "Snapshot generation complete.",
"deleted_stale_snapshots": deleted_count,
"new_snapshots_generated": generated_count,
"failed_days_count": len(failed_days),
"failed_days": failed_days,
"date_range": f"{start_date.isoformat()} to {end_date.isoformat()}",
}
await ImportTask.filter(id=task_id).update(
status="completed", details=summary
)
print(f"[Task {task_id}] Completed successfully. Summary: {summary}")
except Exception as e:
# Catch any fatal error during the task and mark it as failed.
await ImportTask.filter(id=task_id).update(
status="failed",
details={
"error": f"A fatal error occurred during snapshot regeneration: {str(e)}"
},
)
print(f"[Task {task_id}] FAILED with a fatal error: {e}")
|