Spaces:
Running
Running
fix: 先 cuda 再 eval
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoModel, pipeline, AutoTokenizer
|
| 4 |
-
|
| 5 |
import subprocess
|
| 6 |
|
| 7 |
# from issue: https://discuss.huggingface.co/t/how-to-install-flash-attention-on-hf-gradio-space/70698/2
|
|
@@ -11,21 +11,22 @@ subprocess.run(
|
|
| 11 |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
| 12 |
shell=True,
|
| 13 |
)
|
| 14 |
-
|
| 15 |
-
model_name = "OpenGVLab/InternVL2-8B"
|
| 16 |
-
model
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
)
|
| 23 |
-
.eval()
|
| 24 |
-
.cuda()
|
| 25 |
-
)
|
| 26 |
|
| 27 |
-
try:
|
| 28 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
|
|
| 29 |
inference = pipeline(
|
| 30 |
task="visual-question-answering", model=model, tokenizer=tokenizer
|
| 31 |
)
|
|
@@ -33,9 +34,11 @@ except Exception as error:
|
|
| 33 |
raise gr.Error("👌" + str(error), duration=30)
|
| 34 |
|
| 35 |
|
|
|
|
| 36 |
def predict(input_img, questions):
|
| 37 |
try:
|
| 38 |
-
gr.Info(str(type(inference)))
|
|
|
|
| 39 |
predictions = inference(question=questions, image=input_img)
|
| 40 |
return str(predictions)
|
| 41 |
except Exception as e:
|
|
|
|
| 1 |
import torch
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoModel, pipeline, AutoTokenizer
|
| 4 |
+
import spaces
|
| 5 |
import subprocess
|
| 6 |
|
| 7 |
# from issue: https://discuss.huggingface.co/t/how-to-install-flash-attention-on-hf-gradio-space/70698/2
|
|
|
|
| 11 |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
| 12 |
shell=True,
|
| 13 |
)
|
| 14 |
+
try:
|
| 15 |
+
model_name = "OpenGVLab/InternVL2-8B"
|
| 16 |
+
# model: <class 'transformers_modules.OpenGVLab.InternVL2-8B.0e6d592d957d9739b6df0f4b90be4cb0826756b9.modeling_internvl_chat.InternVLChatModel'>
|
| 17 |
+
model = (
|
| 18 |
+
AutoModel.from_pretrained(
|
| 19 |
+
model_name,
|
| 20 |
+
torch_dtype=torch.bfloat16,
|
| 21 |
+
# low_cpu_mem_usage=True,
|
| 22 |
+
trust_remote_code=True,
|
| 23 |
+
)
|
| 24 |
+
.cuda()
|
| 25 |
+
.eval()
|
| 26 |
)
|
|
|
|
|
|
|
|
|
|
| 27 |
|
|
|
|
| 28 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 29 |
+
# pipeline: <class 'transformers.pipelines.visual_question_answering.VisualQuestionAnsweringPipeline'>
|
| 30 |
inference = pipeline(
|
| 31 |
task="visual-question-answering", model=model, tokenizer=tokenizer
|
| 32 |
)
|
|
|
|
| 34 |
raise gr.Error("👌" + str(error), duration=30)
|
| 35 |
|
| 36 |
|
| 37 |
+
@spaces.GPU
|
| 38 |
def predict(input_img, questions):
|
| 39 |
try:
|
| 40 |
+
gr.Info("pipeline: " + str(type(inference)))
|
| 41 |
+
gr.Info("model: " + str(type(model)))
|
| 42 |
predictions = inference(question=questions, image=input_img)
|
| 43 |
return str(predictions)
|
| 44 |
except Exception as e:
|