Spaces:
Paused
Paused
| #!/usr/bin/env python3 | |
| # Example command: | |
| # ./bin/predict.py \ | |
| # model.path=<path to checkpoint, prepared by make_checkpoint.py> \ | |
| # indir=<path to input data> \ | |
| # outdir=<where to store predicts> | |
| import logging | |
| import os | |
| import sys | |
| import traceback | |
| from saicinpainting.evaluation.utils import move_to_device | |
| from saicinpainting.evaluation.refinement import refine_predict | |
| os.environ['OMP_NUM_THREADS'] = '1' | |
| os.environ['OPENBLAS_NUM_THREADS'] = '1' | |
| os.environ['MKL_NUM_THREADS'] = '1' | |
| os.environ['VECLIB_MAXIMUM_THREADS'] = '1' | |
| os.environ['NUMEXPR_NUM_THREADS'] = '1' | |
| import cv2 | |
| import hydra | |
| import numpy as np | |
| import torch | |
| import tqdm | |
| import yaml | |
| from omegaconf import OmegaConf | |
| from torch.utils.data._utils.collate import default_collate | |
| from saicinpainting.training.data.datasets import make_default_val_dataset | |
| from saicinpainting.training.trainers import load_checkpoint | |
| from saicinpainting.utils import register_debug_signal_handlers | |
| LOGGER = logging.getLogger(__name__) | |
| def main(predict_config: OmegaConf): | |
| try: | |
| register_debug_signal_handlers() # kill -10 <pid> will result in traceback dumped into log | |
| device = torch.device(predict_config.device) | |
| train_config_path = os.path.join(predict_config.model.path, 'config.yaml') | |
| with open(train_config_path, 'r') as f: | |
| train_config = OmegaConf.create(yaml.safe_load(f)) | |
| train_config.training_model.predict_only = True | |
| train_config.visualizer.kind = 'noop' | |
| out_ext = predict_config.get('out_ext', '.png') | |
| checkpoint_path = os.path.join(predict_config.model.path, | |
| 'models', | |
| predict_config.model.checkpoint) | |
| model = load_checkpoint(train_config, checkpoint_path, strict=False, map_location='cpu') | |
| model.freeze() | |
| if not predict_config.get('refine', False): | |
| model.to(device) | |
| if not predict_config.indir.endswith('/'): | |
| predict_config.indir += '/' | |
| dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset) | |
| for img_i in tqdm.trange(len(dataset)): | |
| mask_fname = dataset.mask_filenames[img_i] | |
| cur_out_fname = os.path.join( | |
| predict_config.outdir, | |
| os.path.splitext(mask_fname[len(predict_config.indir):])[0] + out_ext | |
| ) | |
| os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True) | |
| batch = default_collate([dataset[img_i]]) | |
| if predict_config.get('refine', False): | |
| assert 'unpad_to_size' in batch, "Unpadded size is required for the refinement" | |
| # image unpadding is taken care of in the refiner, so that output image | |
| # is same size as the input image | |
| cur_res = refine_predict(batch, model, **predict_config.refiner) | |
| cur_res = cur_res[0].permute(1,2,0).detach().cpu().numpy() | |
| else: | |
| with torch.no_grad(): | |
| batch = move_to_device(batch, device) | |
| batch['mask'] = (batch['mask'] > 0) * 1 | |
| batch = model(batch) | |
| cur_res = batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy() | |
| unpad_to_size = batch.get('unpad_to_size', None) | |
| if unpad_to_size is not None: | |
| orig_height, orig_width = unpad_to_size | |
| cur_res = cur_res[:orig_height, :orig_width] | |
| cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8') | |
| cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR) | |
| cv2.imwrite(cur_out_fname, cur_res) | |
| except KeyboardInterrupt: | |
| LOGGER.warning('Interrupted by user') | |
| except Exception as ex: | |
| LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}') | |
| sys.exit(1) | |
| if __name__ == '__main__': | |
| main() |