Spaces:
Build error
Build error
File size: 25,947 Bytes
b82a093 81b3d47 b82a093 2419e27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
import streamlit as st
import torch
import pandas as pd
import numpy as np
from transformers import BertTokenizer, BertModel
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import requests
import py3Dmol
from Bio import SeqIO
import io
from Bio.SeqUtils.ProtParam import ProteinAnalysis
import plotly.express as px
import plotly.graph_objects as go
from collections import Counter
import matplotlib.pyplot as plt
import seaborn as sns
# import shap
st.set_page_config(
page_title="Parkinson's Protein Classifier",
page_icon="🧬",
layout="wide"
)
# Load ProtBERT Model
@st.cache_resource
def load_protbert():
tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
model = BertModel.from_pretrained("Rostlab/prot_bert")
model.eval()
return tokenizer, model
# Embedding Function
def get_protbert_embedding(sequence, tokenizer, model):
sequence = sequence.replace(" ", "")
sequence = ' '.join(list(sequence))
tokens = tokenizer(sequence, return_tensors='pt')
with torch.no_grad():
outputs = model(**tokens)
embedding = torch.mean(outputs.last_hidden_state, dim=1)
return embedding.squeeze().numpy()
# Protein Analysis Function
def analyze_protein(sequence):
sequence = sequence.upper().replace(" ", "").replace("\n", "")
if not all(residue in "ACDEFGHIKLMNPQRSTVWY" for residue in sequence):
return "Invalid amino acid sequence!", None
analysis = ProteinAnalysis(sequence)
length = len(sequence)
mw = analysis.molecular_weight()
aromaticity = analysis.aromaticity()
instability = analysis.instability_index()
gravy = analysis.gravy()
aa_counts = analysis.count_amino_acids()
aa_percent = {k: v/length*100 for k, v in aa_counts.items()}
# Secondary structure
sec_struct = analysis.secondary_structure_fraction()
# Isoelectric point
pI = analysis.isoelectric_point()
# Flexibility
flexibility = analysis.flexibility()
results = {
'basic': {
'Length': length,
'Molecular Weight (Da)': mw,
'Aromaticity': aromaticity,
'Instability Index': instability,
'GRAVY (Hydrophobicity)': gravy,
'Isoelectric Point (pI)': pI
},
'aa_composition': aa_percent,
'secondary_structure': {
'Helix': sec_struct[0],
'Turn': sec_struct[1],
'Sheet': sec_struct[2]
},
'flexibility': flexibility
}
parkinsons_analysis = {
'risk_factors': [],
'notes': []
}
if length != 140:
parkinsons_analysis['risk_factors'].append(f"Sequence length ({length}) deviates from wild-type (140)")
if mw > 14660 or mw < 14400:
parkinsons_analysis['risk_factors'].append(f"Molecular weight ({mw:.2f} Da) differs from wild-type (14.46 kDa)")
if aromaticity > 0.05:
parkinsons_analysis['risk_factors'].append("High aromaticity (potential aggregation risk)")
if instability > 45:
parkinsons_analysis['risk_factors'].append(f"High instability index ({instability:.2f}) suggests toxic form")
if gravy > -0.3:
parkinsons_analysis['risk_factors'].append(f"Hydrophobicity (GRAVY: {gravy:.3f}) suggests aggregation-prone variant")
key_positions = {
53: 'A53T (known pathogenic)',
30: 'E46K (known pathogenic)',
83: 'E83Q (known pathogenic)'
}
high_risk_aas = {
'C': "Cysteine residues can promote aggregation",
'G': "Glycine substitutions often pathogenic",
'P': "Proline substitutions can disrupt structure"
}
for aa, risk in high_risk_aas.items():
if aa_counts.get(aa, 0) > 0:
parkinsons_analysis['notes'].append(f"{risk} ({aa_counts.get(aa, 0)} {aa} residues)")
return results, parkinsons_analysis
def get_sample_data():
data = {
'sequence': [
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVTTVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", # A53T
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVVNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", # Random (non-pathogenic)
"MDVFMKGLSKAKEGVVAAAIKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", # Random (non-pathogenic)
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDVEPEA",
"MDVFMKGLSGAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", # K10G
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGGVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #F94G
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEACEMPSEEGYQDYEPEA", #Y125C
"MDVFMKGLSKHKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #A11C
"MDVFMKGLSKAKEGVVAASEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #A19S
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLTVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #Y39T
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #M5A
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGCQDYEPEA", #Y133C
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDGLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #Q99G
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDCEPEA", #Y136C
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLCVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #Y39C
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDAPVDPDNEAYEMPSEEGYQDYEPEA", #M116A
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTGEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #K45G
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVGKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #K96G
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDGPVDPDNEAYEMPSEEGYQDYEPEA", #M116G
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAPEMPSEEGYQDYEPEA", #Y125P
"GDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #M1G
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGSVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #F94S
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGVQDYEPEA", #Y133V
"MDVFMKGLSKAKEGVVAAAEKTKGGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #Q24G
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEGGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #E105G
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDTEPEA", #Y136T
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKGGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #E35G
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGTQDYEPEA", #Y133T
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTGEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #K60G
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #F4G
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVFGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #E83F
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTKVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #N65K
"MDVFMKGLSKSKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #A11S
"MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTEVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA" #N65E
],
'label': [1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
'mutation': ['A53T', 'None', 'None', 'Unknown', 'K10G', 'F94G', 'Y125C', 'A11C', 'A19S', 'Y39T',
'M5A', 'Y133C', 'Q99G', 'Y136C', 'Y39C', 'M116A', 'K45G', 'K96G', 'M116G', 'Y125P',
'M1G', 'F94S', 'Y133V', 'Q24G', 'E105G', 'Y136T', 'E35G', 'Y133T', 'K60G', 'F4G',
'E83F', 'N65K', 'A11S', 'N65E']
}
return pd.DataFrame(data)
def train_classifier(X, y):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
clf = RandomForestClassifier(n_estimators=100, random_state=42)
clf.fit(X_train, y_train)
return clf, X_test, y_test
# Main App
def main():
st.title("🧬 Parkinson's Disease Protein Sequence Classifier")
st.markdown("""
This app uses ProtBERT to generate protein sequence embeddings and a Random Forest classifier
to predict whether a protein sequence is associated with Parkinson's disease.
""")
st.sidebar.header("About")
st.sidebar.info("""
This tool uses:
- ProtBERT for protein sequence embeddings
- Random Forest for classification
- Sample dataset of known variants
- 3D structure prediction via ESMFold API
""")
with st.spinner("Loading ProtBERT model..."):
tokenizer, model = load_protbert()
if 'classifier' not in st.session_state:
st.session_state.classifier = None
st.session_state.X_test = None
st.session_state.y_test = None
st.session_state.training_data = None
tab1, tab2, tab3, tab4 = st.tabs(["Train Model", "Evaluate Model", "Predict New Sequence", "Data Exploration"])
with tab1:
st.header("Train Classification Model")
if st.button("Train Model with Sample Data"):
with st.spinner("Training in progress..."):
df = get_sample_data()
embeddings = []
progress_bar = st.progress(0)
status_text = st.empty()
for i, seq in enumerate(df['sequence']):
try:
status_text.text(f"Processing sequence {i+1}/{len(df['sequence'])}...")
progress_bar.progress((i+1)/len(df['sequence']))
emb = get_protbert_embedding(seq, tokenizer, model)
embeddings.append(emb)
except Exception as e:
st.warning(f"Error with sequence {i+1}: {str(e)}")
embeddings.append(np.zeros(1024))
X = np.array(embeddings)
y = df['label'].values
clf, X_test, y_test = train_classifier(X, y)
st.session_state.classifier = clf
st.session_state.X_test = X_test
st.session_state.y_test = y_test
st.session_state.training_data = df
st.success("Model trained successfully!")
st.subheader("Sample Training Data")
st.dataframe(df)
st.subheader("Class Distribution")
class_counts = df['label'].value_counts()
fig = px.pie(values=class_counts, names=class_counts.index.map({0: 'Non-Parkinson', 1: 'Parkinson'}))
st.plotly_chart(fig, use_container_width=True)
with tab2:
st.header("Evaluate Model Performance")
if st.session_state.classifier is not None:
clf = st.session_state.classifier
X_test = st.session_state.X_test
y_test = st.session_state.y_test
y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)[:, 1]
st.subheader("Classification Report")
report = classification_report(y_test, y_pred, output_dict=True)
st.dataframe(pd.DataFrame(report).transpose())
st.subheader("Confusion Matrix")
cm = confusion_matrix(y_test, y_pred)
fig = px.imshow(cm,
labels=dict(x="Predicted", y="Actual", color="Count"),
x=['Non-Parkinson', 'Parkinson'],
y=['Non-Parkinson', 'Parkinson'],
text_auto=True)
st.plotly_chart(fig, use_container_width=True)
st.subheader("Feature Importance")
try:
importances = clf.feature_importances_
top_n = 20
indices = np.argsort(importances)[-top_n:]
fig = go.Figure()
fig.add_trace(go.Bar(
y=[f"Feature {i}" for i in indices],
x=importances[indices],
orientation='h'
))
fig.update_layout(title=f"Top {top_n} Important Features",
xaxis_title="Importance Score")
st.plotly_chart(fig, use_container_width=True)
except Exception as e:
st.warning(f"Could not display feature importance: {str(e)}")
else:
st.warning("Please train the model first using the 'Train Model' tab.")
with tab3:
def fetch_structure(sequence):
url = "https://api.esmatlas.com/foldSequence/v1/pdb/"
headers = {"Content-Type": "text/plain"}
try:
response = requests.post(url, data=sequence, headers=headers, timeout=30)
if response.status_code == 200:
return response.text
else:
raise Exception(f"API returned status code {response.status_code}")
except Exception as e:
raise Exception(f"Failed to fetch structure: {str(e)}")
def display_structure(pdb_data, color="chain", show_sidechains=True, show_mainchains=False):
view = py3Dmol.view(js='https://3dmol.org/build/3Dmol.js')
view.addModel(pdb_data, 'pdb')
if color == "rainbow":
view.setStyle({'cartoon': {'color': 'spectrum'}})
elif color == "chain":
view.setStyle({'cartoon': {'color': 'chain'}})
elif color == "residue":
view.setStyle({'cartoon': {'colorscheme': 'residue'}})
else:
view.setStyle({'cartoon': {'color': 'white'}})
if show_sidechains:
view.addStyle({'and': [{'atom': ['C', 'O', 'N'], 'invert': True}]},
{'stick': {'colorscheme': "WhiteCarbon", 'radius': 0.3}})
if show_mainchains:
view.addStyle({'atom': ['C', 'O', 'N', 'CA']},
{'stick': {'colorscheme': "WhiteCarbon", 'radius': 0.3}})
view.zoomTo()
return view
st.header("Predict New Sequence")
col1, col2 = st.columns(2)
with col1:
uploaded_file = st.file_uploader("Upload a FASTA file:", type=["fasta", "fa"])
seq_input = st.text_area(
"Or enter protein sequence manually:",
value="MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVTTVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA",
height=200
)
if uploaded_file is not None:
try:
fasta_content = uploaded_file.read().decode("utf-8")
fasta_io = io.StringIO(fasta_content)
record = next(SeqIO.parse(fasta_io, "fasta"))
seq_input = str(record.seq)
st.success(f"Sequence loaded from FASTA file: {record.id}")
except Exception as e:
st.error(f"Error reading FASTA file: {e}")
with col2:
if st.button("Analyze Sequence"):
if not seq_input.strip():
st.error("Please enter a protein sequence.")
else:
with st.spinner("Analyzing sequence..."):
try:
analysis_results, parkinsons_analysis = analyze_protein(seq_input)
if isinstance(analysis_results, str):
st.error(analysis_results)
else:
st.subheader("Basic Properties")
st.table(pd.DataFrame.from_dict(analysis_results['basic'], orient='index'))
st.subheader("Amino Acid Composition")
aa_df = pd.DataFrame.from_dict(analysis_results['aa_composition'], orient='index', columns=['Percentage'])
st.bar_chart(aa_df)
st.subheader("Secondary Structure")
ss_df = pd.DataFrame.from_dict(analysis_results['secondary_structure'], orient='index', columns=['Fraction'])
st.bar_chart(ss_df)
st.subheader("Parkinson's Risk Analysis")
if parkinsons_analysis['risk_factors']:
st.warning("⚠️ Potential Parkinson's risk factors detected:")
for factor in parkinsons_analysis['risk_factors']:
st.write(f"- {factor}")
else:
st.success("No obvious Parkinson's risk factors detected")
if parkinsons_analysis['notes']:
st.info("Additional notes:")
for note in parkinsons_analysis['notes']:
st.write(f"- {note}")
except Exception as e:
st.error(f"Error analyzing sequence: {str(e)}")
if st.button("Predict Parkinson's Association"):
if st.session_state.classifier is None:
st.error("Please train the model first using the 'Train Model' tab.")
elif not seq_input.strip():
st.error("Please enter a protein sequence.")
else:
with st.spinner("Generating embedding and making prediction..."):
try:
new_emb = get_protbert_embedding(seq_input, tokenizer, model).reshape(1, -1)
prediction = st.session_state.classifier.predict(new_emb)
proba = st.session_state.classifier.predict_proba(new_emb)
st.subheader("Prediction Result")
col1, col2 = st.columns(2)
with col1:
if prediction[0] == 1:
st.error("**Prediction: Parkinson-related protein**")
else:
st.success("**Prediction: Not Parkinson-related**")
st.write(f"Confidence: {max(proba[0])*100:.2f}%")
proba_df = pd.DataFrame({
"Class": ["Not Parkinson-related", "Parkinson-related"],
"Probability": proba[0]
})
fig = px.bar(proba_df, x='Class', y='Probability',
color='Class',
color_discrete_map={
"Not Parkinson-related": "green",
"Parkinson-related": "red"
})
st.plotly_chart(fig, use_container_width=True)
# with col2:
# # Show SHAP values if available
# try:
# explainer = shap.TreeExplainer(st.session_state.classifier)
# shap_values = explainer.shap_values(new_emb)
# fig, ax = plt.subplots()
# shap.summary_plot(shap_values, new_emb,
# feature_names=[f"Feature {i}" for i in range(new_emb.shape[1])],
# plot_type="bar",
# show=False)
# st.pyplot(fig)
# plt.close()
# except Exception as e:
# st.warning(f"Could not generate SHAP explanation: {str(e)}")
st.subheader("3D Protein Structure Prediction")
try:
pdb_data = fetch_structure(seq_input)
col1, col2 = st.columns(2)
with col1:
st.write("**Cartoon Representation**")
view = display_structure(pdb_data, color="chain")
st.components.v1.html(view._make_html(), height=500)
with col2:
st.write("**Residue Coloring**")
view = display_structure(pdb_data, color="residue", show_sidechains=True)
st.components.v1.html(view._make_html(), height=500)
st.download_button(
label="Download PDB File",
data=pdb_data,
file_name="predicted_structure.pdb",
mime="chemical/x-pdb"
)
except Exception as e:
st.error(f"Could not fetch protein structure: {str(e)}")
except Exception as e:
st.error(f"Error processing sequence: {str(e)}")
with tab4:
st.header("Data Exploration")
if st.session_state.training_data is not None:
df = st.session_state.training_data
st.subheader("Training Data Overview")
st.dataframe(df)
st.subheader("Mutation Analysis")
mutation_counts = df['mutation'].value_counts().reset_index()
mutation_counts.columns = ['Mutation', 'Count']
fig = px.bar(mutation_counts, x='Mutation', y='Count')
st.plotly_chart(fig, use_container_width=True)
st.subheader("Label Distribution by Mutation")
fig = px.histogram(df, x='mutation', color='label',
barmode='group',
color_discrete_map={0: 'green', 1: 'red'})
st.plotly_chart(fig, use_container_width=True)
st.subheader("Sequence Length Distribution")
df['length'] = df['sequence'].apply(len)
fig = px.histogram(df, x='length', color='label',
color_discrete_map={0: 'green', 1: 'red'})
st.plotly_chart(fig, use_container_width=True)
else:
st.warning("Please train the model first to explore the data.")
if __name__ == "__main__":
main() |