File size: 25,947 Bytes
b82a093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81b3d47
b82a093
 
2419e27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import streamlit as st
import torch
import pandas as pd
import numpy as np
from transformers import BertTokenizer, BertModel
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
import requests
import py3Dmol
from Bio import SeqIO
import io
from Bio.SeqUtils.ProtParam import ProteinAnalysis
import plotly.express as px
import plotly.graph_objects as go
from collections import Counter
import matplotlib.pyplot as plt
import seaborn as sns
# import shap

st.set_page_config(
    page_title="Parkinson's Protein Classifier",
    page_icon="🧬",
    layout="wide"
)

# Load ProtBERT Model
@st.cache_resource
def load_protbert():
    tokenizer = BertTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
    model = BertModel.from_pretrained("Rostlab/prot_bert")
    model.eval()
    return tokenizer, model

# Embedding Function
def get_protbert_embedding(sequence, tokenizer, model):
    sequence = sequence.replace(" ", "")  
    sequence = ' '.join(list(sequence))  
    tokens = tokenizer(sequence, return_tensors='pt')
    with torch.no_grad():
        outputs = model(**tokens)
    embedding = torch.mean(outputs.last_hidden_state, dim=1)
    return embedding.squeeze().numpy()

# Protein Analysis Function
def analyze_protein(sequence):
    sequence = sequence.upper().replace(" ", "").replace("\n", "")
    
    if not all(residue in "ACDEFGHIKLMNPQRSTVWY" for residue in sequence):
        return "Invalid amino acid sequence!", None
    
    analysis = ProteinAnalysis(sequence)
    
    length = len(sequence)
    mw = analysis.molecular_weight()
    aromaticity = analysis.aromaticity()
    instability = analysis.instability_index()
    gravy = analysis.gravy()
    aa_counts = analysis.count_amino_acids()
    aa_percent = {k: v/length*100 for k, v in aa_counts.items()}
    
    # Secondary structure
    sec_struct = analysis.secondary_structure_fraction()
    
    # Isoelectric point
    pI = analysis.isoelectric_point()
    
    # Flexibility
    flexibility = analysis.flexibility()
    
    results = {
        'basic': {
            'Length': length,
            'Molecular Weight (Da)': mw,
            'Aromaticity': aromaticity,
            'Instability Index': instability,
            'GRAVY (Hydrophobicity)': gravy,
            'Isoelectric Point (pI)': pI
        },
        'aa_composition': aa_percent,
        'secondary_structure': {
            'Helix': sec_struct[0],
            'Turn': sec_struct[1],
            'Sheet': sec_struct[2]
        },
        'flexibility': flexibility
    }
    
    parkinsons_analysis = {
        'risk_factors': [],
        'notes': []
    }
    
    if length != 140:
        parkinsons_analysis['risk_factors'].append(f"Sequence length ({length}) deviates from wild-type (140)")
    
    if mw > 14660 or mw < 14400:
        parkinsons_analysis['risk_factors'].append(f"Molecular weight ({mw:.2f} Da) differs from wild-type (14.46 kDa)")
    
    if aromaticity > 0.05:
        parkinsons_analysis['risk_factors'].append("High aromaticity (potential aggregation risk)")
    
    if instability > 45:
        parkinsons_analysis['risk_factors'].append(f"High instability index ({instability:.2f}) suggests toxic form")
    
    if gravy > -0.3:
        parkinsons_analysis['risk_factors'].append(f"Hydrophobicity (GRAVY: {gravy:.3f}) suggests aggregation-prone variant")
    
    key_positions = {
        53: 'A53T (known pathogenic)',
        30: 'E46K (known pathogenic)',
        83: 'E83Q (known pathogenic)'
    }
    
    high_risk_aas = {
        'C': "Cysteine residues can promote aggregation",
        'G': "Glycine substitutions often pathogenic",
        'P': "Proline substitutions can disrupt structure"
    }
    
    for aa, risk in high_risk_aas.items():
        if aa_counts.get(aa, 0) > 0:
            parkinsons_analysis['notes'].append(f"{risk} ({aa_counts.get(aa, 0)} {aa} residues)")
    
    return results, parkinsons_analysis

def get_sample_data():
    data = {
        'sequence': [
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVTTVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA",  # A53T
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVVNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA",                        # Random (non-pathogenic)
            "MDVFMKGLSKAKEGVVAAAIKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA",                        # Random (non-pathogenic)
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDVEPEA",
            "MDVFMKGLSGAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", # K10G
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGGVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #F94G
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEACEMPSEEGYQDYEPEA", #Y125C
            "MDVFMKGLSKHKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #A11C
            "MDVFMKGLSKAKEGVVAASEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #A19S
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLTVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #Y39T
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #M5A
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGCQDYEPEA", #Y133C
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDGLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #Q99G
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDCEPEA", #Y136C
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLCVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #Y39C
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDAPVDPDNEAYEMPSEEGYQDYEPEA", #M116A
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTGEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #K45G
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVGKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #K96G
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDGPVDPDNEAYEMPSEEGYQDYEPEA", #M116G
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAPEMPSEEGYQDYEPEA", #Y125P
            "GDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #M1G
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGSVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #F94S
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGVQDYEPEA", #Y133V
            "MDVFMKGLSKAKEGVVAAAEKTKGGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #Q24G
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEGGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #E105G
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDTEPEA", #Y136T
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKGGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #E35G
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGTQDYEPEA", #Y133T
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTGEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #K60G
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #F4G
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVFGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #E83F
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTKVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #N65K
            "MDVFMKGLSKSKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA", #A11S
            "MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTEVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA" #N65E
        ],
        'label': [1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
        'mutation': ['A53T', 'None', 'None', 'Unknown', 'K10G', 'F94G', 'Y125C', 'A11C', 'A19S', 'Y39T', 
                    'M5A', 'Y133C', 'Q99G', 'Y136C', 'Y39C', 'M116A', 'K45G', 'K96G', 'M116G', 'Y125P',
                    'M1G', 'F94S', 'Y133V', 'Q24G', 'E105G', 'Y136T', 'E35G', 'Y133T', 'K60G', 'F4G',
                    'E83F', 'N65K', 'A11S', 'N65E']
    }
    return pd.DataFrame(data)

def train_classifier(X, y):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    clf = RandomForestClassifier(n_estimators=100, random_state=42)
    clf.fit(X_train, y_train)
    return clf, X_test, y_test

# Main App
def main():
    st.title("🧬 Parkinson's Disease Protein Sequence Classifier")
    st.markdown("""
    This app uses ProtBERT to generate protein sequence embeddings and a Random Forest classifier 
    to predict whether a protein sequence is associated with Parkinson's disease.
    """)
    
    st.sidebar.header("About")
    st.sidebar.info("""
    This tool uses:
    - ProtBERT for protein sequence embeddings
    - Random Forest for classification
    - Sample dataset of known variants
    - 3D structure prediction via ESMFold API
    """)
    
    with st.spinner("Loading ProtBERT model..."):
        tokenizer, model = load_protbert()
    
    if 'classifier' not in st.session_state:
        st.session_state.classifier = None
        st.session_state.X_test = None
        st.session_state.y_test = None
        st.session_state.training_data = None
    
    tab1, tab2, tab3, tab4 = st.tabs(["Train Model", "Evaluate Model", "Predict New Sequence", "Data Exploration"])
    
    with tab1:
        st.header("Train Classification Model")
        
        if st.button("Train Model with Sample Data"):
            with st.spinner("Training in progress..."):
                df = get_sample_data()
                embeddings = []
                
                progress_bar = st.progress(0)
                status_text = st.empty()
                
                for i, seq in enumerate(df['sequence']):
                    try:
                        status_text.text(f"Processing sequence {i+1}/{len(df['sequence'])}...")
                        progress_bar.progress((i+1)/len(df['sequence']))
                        emb = get_protbert_embedding(seq, tokenizer, model)
                        embeddings.append(emb)
                    except Exception as e:
                        st.warning(f"Error with sequence {i+1}: {str(e)}")
                        embeddings.append(np.zeros(1024)) 
                
                X = np.array(embeddings)
                y = df['label'].values
                
                clf, X_test, y_test = train_classifier(X, y)
                st.session_state.classifier = clf
                st.session_state.X_test = X_test
                st.session_state.y_test = y_test
                st.session_state.training_data = df
                
                st.success("Model trained successfully!")
                
                st.subheader("Sample Training Data")
                st.dataframe(df)
                
                st.subheader("Class Distribution")
                class_counts = df['label'].value_counts()
                fig = px.pie(values=class_counts, names=class_counts.index.map({0: 'Non-Parkinson', 1: 'Parkinson'}))
                st.plotly_chart(fig, use_container_width=True)
    
    with tab2:
        st.header("Evaluate Model Performance")
        
        if st.session_state.classifier is not None:
            clf = st.session_state.classifier
            X_test = st.session_state.X_test
            y_test = st.session_state.y_test
            
            y_pred = clf.predict(X_test)
            y_proba = clf.predict_proba(X_test)[:, 1]
            
            st.subheader("Classification Report")
            report = classification_report(y_test, y_pred, output_dict=True)
            st.dataframe(pd.DataFrame(report).transpose())
            
            st.subheader("Confusion Matrix")
            cm = confusion_matrix(y_test, y_pred)
            fig = px.imshow(cm, 
                          labels=dict(x="Predicted", y="Actual", color="Count"),
                          x=['Non-Parkinson', 'Parkinson'],
                          y=['Non-Parkinson', 'Parkinson'],
                          text_auto=True)
            st.plotly_chart(fig, use_container_width=True)
            
            st.subheader("Feature Importance")
            try:
                importances = clf.feature_importances_
                top_n = 20
                indices = np.argsort(importances)[-top_n:]
                
                fig = go.Figure()
                fig.add_trace(go.Bar(
                    y=[f"Feature {i}" for i in indices],
                    x=importances[indices],
                    orientation='h'
                ))
                fig.update_layout(title=f"Top {top_n} Important Features",
                                xaxis_title="Importance Score")
                st.plotly_chart(fig, use_container_width=True)
            except Exception as e:
                st.warning(f"Could not display feature importance: {str(e)}")
        else:
            st.warning("Please train the model first using the 'Train Model' tab.")
    
    with tab3:
        def fetch_structure(sequence):
            url = "https://api.esmatlas.com/foldSequence/v1/pdb/"
            headers = {"Content-Type": "text/plain"}
            try:
                response = requests.post(url, data=sequence, headers=headers, timeout=30)
                if response.status_code == 200:
                    return response.text
                else:
                    raise Exception(f"API returned status code {response.status_code}")
            except Exception as e:
                raise Exception(f"Failed to fetch structure: {str(e)}")
            
        def display_structure(pdb_data, color="chain", show_sidechains=True, show_mainchains=False):
            view = py3Dmol.view(js='https://3dmol.org/build/3Dmol.js')
            view.addModel(pdb_data, 'pdb')

            if color == "rainbow":
                view.setStyle({'cartoon': {'color': 'spectrum'}})
            elif color == "chain":
                view.setStyle({'cartoon': {'color': 'chain'}})
            elif color == "residue":
                view.setStyle({'cartoon': {'colorscheme': 'residue'}})
            else:
                view.setStyle({'cartoon': {'color': 'white'}})

            if show_sidechains:
                view.addStyle({'and': [{'atom': ['C', 'O', 'N'], 'invert': True}]},
                            {'stick': {'colorscheme': "WhiteCarbon", 'radius': 0.3}})
            if show_mainchains:
                view.addStyle({'atom': ['C', 'O', 'N', 'CA']},
                            {'stick': {'colorscheme': "WhiteCarbon", 'radius': 0.3}})

            view.zoomTo()
            return view

        st.header("Predict New Sequence")
        
        col1, col2 = st.columns(2)
        
        with col1:
            uploaded_file = st.file_uploader("Upload a FASTA file:", type=["fasta", "fa"])
            seq_input = st.text_area(
                "Or enter protein sequence manually:",
                value="MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVTTVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA",
                height=200
            )
            
            if uploaded_file is not None:
                try:
                    fasta_content = uploaded_file.read().decode("utf-8")
                    fasta_io = io.StringIO(fasta_content)
                    record = next(SeqIO.parse(fasta_io, "fasta"))
                    seq_input = str(record.seq)
                    st.success(f"Sequence loaded from FASTA file: {record.id}")
                except Exception as e:
                    st.error(f"Error reading FASTA file: {e}")
        
        with col2:
            if st.button("Analyze Sequence"):
                if not seq_input.strip():
                    st.error("Please enter a protein sequence.")
                else:
                    with st.spinner("Analyzing sequence..."):
                        try:
                            analysis_results, parkinsons_analysis = analyze_protein(seq_input)
                            
                            if isinstance(analysis_results, str):
                                st.error(analysis_results)
                            else:
                                st.subheader("Basic Properties")
                                st.table(pd.DataFrame.from_dict(analysis_results['basic'], orient='index'))
                                
                                st.subheader("Amino Acid Composition")
                                aa_df = pd.DataFrame.from_dict(analysis_results['aa_composition'], orient='index', columns=['Percentage'])
                                st.bar_chart(aa_df)
                                
                                st.subheader("Secondary Structure")
                                ss_df = pd.DataFrame.from_dict(analysis_results['secondary_structure'], orient='index', columns=['Fraction'])
                                st.bar_chart(ss_df)
                                
                                st.subheader("Parkinson's Risk Analysis")
                                if parkinsons_analysis['risk_factors']:
                                    st.warning("⚠️ Potential Parkinson's risk factors detected:")
                                    for factor in parkinsons_analysis['risk_factors']:
                                        st.write(f"- {factor}")
                                else:
                                    st.success("No obvious Parkinson's risk factors detected")
                                
                                if parkinsons_analysis['notes']:
                                    st.info("Additional notes:")
                                    for note in parkinsons_analysis['notes']:
                                        st.write(f"- {note}")
                        except Exception as e:
                            st.error(f"Error analyzing sequence: {str(e)}")
        
        if st.button("Predict Parkinson's Association"):
            if st.session_state.classifier is None:
                st.error("Please train the model first using the 'Train Model' tab.")
            elif not seq_input.strip():
                st.error("Please enter a protein sequence.")
            else:
                with st.spinner("Generating embedding and making prediction..."):
                    try:
                        new_emb = get_protbert_embedding(seq_input, tokenizer, model).reshape(1, -1)
                        prediction = st.session_state.classifier.predict(new_emb)
                        proba = st.session_state.classifier.predict_proba(new_emb)
                        
                        st.subheader("Prediction Result")
                        col1, col2 = st.columns(2)
                        
                        with col1:
                            if prediction[0] == 1:
                                st.error("**Prediction: Parkinson-related protein**")
                            else:
                                st.success("**Prediction: Not Parkinson-related**")
                            
                            st.write(f"Confidence: {max(proba[0])*100:.2f}%")
                            
                            proba_df = pd.DataFrame({
                                "Class": ["Not Parkinson-related", "Parkinson-related"],
                                "Probability": proba[0]
                            })
                            fig = px.bar(proba_df, x='Class', y='Probability', 
                                       color='Class', 
                                       color_discrete_map={
                                           "Not Parkinson-related": "green",
                                           "Parkinson-related": "red"
                                       })
                            st.plotly_chart(fig, use_container_width=True)
                        
                        # with col2:
                        #     # Show SHAP values if available
                        #     try:
                        #         explainer = shap.TreeExplainer(st.session_state.classifier)
                        #         shap_values = explainer.shap_values(new_emb)
                                
                        #         fig, ax = plt.subplots()
                        #         shap.summary_plot(shap_values, new_emb, 
                        #                         feature_names=[f"Feature {i}" for i in range(new_emb.shape[1])],
                        #                         plot_type="bar", 
                        #                         show=False)
                        #         st.pyplot(fig)
                        #         plt.close()
                        #     except Exception as e:
                        #         st.warning(f"Could not generate SHAP explanation: {str(e)}")
                        
                        st.subheader("3D Protein Structure Prediction")
                        try:
                            pdb_data = fetch_structure(seq_input)
                            
                            col1, col2 = st.columns(2)
                            with col1:
                                st.write("**Cartoon Representation**")
                                view = display_structure(pdb_data, color="chain")
                                st.components.v1.html(view._make_html(), height=500)
                            
                            with col2:
                                st.write("**Residue Coloring**")
                                view = display_structure(pdb_data, color="residue", show_sidechains=True)
                                st.components.v1.html(view._make_html(), height=500)
                            
                            st.download_button(
                                label="Download PDB File",
                                data=pdb_data,
                                file_name="predicted_structure.pdb",
                                mime="chemical/x-pdb"
                            )
                        except Exception as e:
                            st.error(f"Could not fetch protein structure: {str(e)}")
                        
                    except Exception as e:
                        st.error(f"Error processing sequence: {str(e)}")
    
    with tab4:
        st.header("Data Exploration")
        
        if st.session_state.training_data is not None:
            df = st.session_state.training_data
            
            st.subheader("Training Data Overview")
            st.dataframe(df)
            
            st.subheader("Mutation Analysis")
            mutation_counts = df['mutation'].value_counts().reset_index()
            mutation_counts.columns = ['Mutation', 'Count']
            fig = px.bar(mutation_counts, x='Mutation', y='Count')
            st.plotly_chart(fig, use_container_width=True)
            
            st.subheader("Label Distribution by Mutation")
            fig = px.histogram(df, x='mutation', color='label', 
                             barmode='group',
                             color_discrete_map={0: 'green', 1: 'red'})
            st.plotly_chart(fig, use_container_width=True)
            
            st.subheader("Sequence Length Distribution")
            df['length'] = df['sequence'].apply(len)
            fig = px.histogram(df, x='length', color='label',
                             color_discrete_map={0: 'green', 1: 'red'})
            st.plotly_chart(fig, use_container_width=True)
        else:
            st.warning("Please train the model first to explore the data.") 

if __name__ == "__main__":
    main()