Spaces:
Sleeping
Sleeping
File size: 6,773 Bytes
81bb955 f88b11c 81bb955 2862b38 81bb955 fe8c737 81bb955 f88b11c 81bb955 f88b11c 81bb955 f88b11c 81bb955 f88b11c fe8c737 f88b11c fe8c737 f88b11c fe8c737 f88b11c fe8c737 f88b11c 81bb955 fe8c737 f88b11c fe8c737 f88b11c fe8c737 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import gradio as gr
from transformers import pipeline
from gtts import gTTS
import time
import os
# Load models
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
summarization_pipeline = pipeline("summarization", model="RussianNLP/FRED-T5-Summarizer")
# Task logic
def perform_task(task, text):
if not text.strip():
return "β οΈ Please enter some text to analyze.", None, gr.update(visible=False)
time.sleep(0.5)
if task == "Sentiment Analysis":
result = sentiment_pipeline(text)[0]
label = result['label']
score = round(result['score'], 3)
emoji = "π" if label == "POSITIVE" else "π"
confidence_bar = "β" * int(score * 10) + "β" * (10 - int(score * 10))
output = f"""
{emoji} **Sentiment Analysis Results**
**Label:** {label}
**Confidence:** {score} ({score*100:.1f}%)
**Visual:** {confidence_bar}
**Interpretation:** This text expresses a {label.lower()} sentiment with {score*100:.1f}% confidence.
""".strip()
return output, None, gr.update(visible=False)
elif task == "Summarization":
result = summarization_pipeline(text, max_length=100, min_length=30, do_sample=False)
summary = result[0]['summary_text']
original_words = len(text.split())
summary_words = len(summary.split())
compression_ratio = round((1 - summary_words/original_words) * 100, 1)
output = f"""
π **Text Summarization Results**
**Summary:**
{summary}
**Statistics:**
β’ Original: {original_words} words
β’ Summary: {summary_words} words
β’ Compression: {compression_ratio}% reduction
""".strip()
return output, None, gr.update(visible=False)
elif task == "Text-to-Speech":
tts = gTTS(text)
filename = "tts_output.mp3"
tts.save(filename)
word_count = len(text.split())
char_count = len(text)
output = f"""
π **Text-to-Speech Generated Successfully!**
**Input Statistics:**
β’ Words: {word_count}
β’ Characters: {char_count}
β’ Estimated duration: ~{word_count * 0.5:.1f} seconds
**Audio file ready for playback below** β¬οΈ
""".strip()
return output, filename, gr.update(visible=True, value=filename)
# Handle button click
def handle_task_processing(task, text):
if not text.strip():
return "β οΈ Please enter some text to get started!", None, gr.update(visible=False)
result_text, audio_file, audio_update = perform_task(task, text)
return result_text, audio_file, audio_update
# Custom CSS
custom_css = """<style>
/* Same CSS as before, trimmed for brevity */
body, .gradio-container {
background-color: #0a0a0a !important;
color: #ffffff !important;
}
</style>"""
# UI Layout
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
gr.HTML(custom_css)
gr.Markdown("# π€ Multi-Task AI Assistant", elem_id="title")
with gr.Tabs():
# === Main Assistant Tab ===
with gr.Tab("π§ Multi-Task Interface"):
gr.Markdown("""
<div style="text-align: center; margin-bottom: 2rem; color: #b0b0b0; font-size: 1.2rem;">
Harness the power of AI for <strong>sentiment analysis</strong>, <strong>text summarization</strong>, and <strong>text-to-speech</strong> conversion
</div>
""")
with gr.Row():
with gr.Column(scale=1, min_width=250):
task_selector = gr.Dropdown(
choices=["Sentiment Analysis", "Summarization", "Text-to-Speech"],
label="π§ Select AI Task",
value="Sentiment Analysis",
info="Choose the AI capability you want to use"
)
gr.Markdown("""
**π Sentiment Analysis**: Analyze emotional tone and polarity of text
**βοΈ Summarization**: Generate concise summaries of long text
**π Text-to-Speech**: Convert text into natural-sounding audio
""", elem_classes=["task-info"])
with gr.Column(scale=2):
textbox = gr.Textbox(
lines=8,
label="π Input Text",
placeholder="Enter your text here...",
info="Type or paste the text you want to process"
)
with gr.Row():
run_button = gr.Button("π Process with AI", size="lg", variant="primary")
gr.Markdown("## π Results", elem_classes=["results-header"])
with gr.Row():
with gr.Column(scale=2):
output_text = gr.Textbox(
label="π Analysis Results",
lines=8,
interactive=False
)
with gr.Column(scale=1):
output_audio = gr.Audio(
label="π Generated Audio",
type="filepath",
visible=False,
)
run_button.click(
fn=handle_task_processing,
inputs=[task_selector, textbox],
outputs=[output_text, output_audio, output_audio]
)
# === Sentiment Chatbot Tab ===
with gr.Tab("π¬ Sentiment Chatbot"):
gr.ChatInterface(
fn=lambda message, history: (
history + [
(
message,
f"π§ Sentiment: {sentiment_pipeline(message)[0]['label']} (Confidence: {round(sentiment_pipeline(message)[0]['score'], 2)})"
)
],
history + [
(
message,
f"π§ Sentiment: {sentiment_pipeline(message)[0]['label']} (Confidence: {round(sentiment_pipeline(message)[0]['score'], 2)})"
)
]
),
title="Sentiment Chatbot",
description="Chat with the AI to detect the sentiment of your messages.",
)
gr.Markdown("""
<div style="text-align: center; margin-top: 3rem; padding: 2rem; color: #666; border-top: 1px solid #333;">
<p>β¨ <strong>Multi-Task AI Assistant</strong> - Powered by Transformers & Gradio</p>
<p>Built with β€οΈ for seamless AI interaction</p>
</div>
""")
# Launch
if __name__ == "__main__":
demo.launch(
share=True,
debug=True,
show_error=True
)
|