Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,185 +1,237 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import pipeline
|
3 |
from gtts import gTTS
|
4 |
import time
|
5 |
import os
|
6 |
|
7 |
-
#
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
summarization_pipeline = pipeline("summarization", model="RussianNLP/FRED-T5-Summarizer")
|
10 |
|
11 |
-
# Task
|
12 |
-
def
|
13 |
if not text.strip():
|
14 |
-
return "
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
if task == "Sentiment Analysis":
|
19 |
-
result = sentiment_pipeline(text)[0]
|
20 |
-
label = result['label']
|
21 |
-
score = round(result['score'], 3)
|
22 |
-
emoji = "π" if label == "POSITIVE" else "π"
|
23 |
-
confidence_bar = "β" * int(score * 10) + "β" * (10 - int(score * 10))
|
24 |
-
output = f"""
|
25 |
-
{emoji} **Sentiment Analysis Results**
|
26 |
-
|
27 |
-
**Label:** {label}
|
28 |
-
**Confidence:** {score} ({score*100:.1f}%)
|
29 |
-
**Visual:** {confidence_bar}
|
30 |
-
|
31 |
-
**Interpretation:** This text expresses a {label.lower()} sentiment with {score*100:.1f}% confidence.
|
32 |
-
""".strip()
|
33 |
-
return output, None, gr.update(visible=False)
|
34 |
-
|
35 |
-
elif task == "Summarization":
|
36 |
-
result = summarization_pipeline(text, max_length=100, min_length=30, do_sample=False)
|
37 |
-
summary = result[0]['summary_text']
|
38 |
-
original_words = len(text.split())
|
39 |
-
summary_words = len(summary.split())
|
40 |
-
compression_ratio = round((1 - summary_words/original_words) * 100, 1)
|
41 |
-
output = f"""
|
42 |
-
π **Text Summarization Results**
|
43 |
-
|
44 |
-
**Summary:**
|
45 |
-
{summary}
|
46 |
-
|
47 |
-
**Statistics:**
|
48 |
-
β’ Original: {original_words} words
|
49 |
-
β’ Summary: {summary_words} words
|
50 |
-
β’ Compression: {compression_ratio}% reduction
|
51 |
-
""".strip()
|
52 |
-
return output, None, gr.update(visible=False)
|
53 |
|
54 |
-
|
55 |
-
tts = gTTS(text)
|
56 |
-
filename = "tts_output.mp3"
|
57 |
-
tts.save(filename)
|
58 |
-
word_count = len(text.split())
|
59 |
-
char_count = len(text)
|
60 |
-
output = f"""
|
61 |
-
π **Text-to-Speech Generated Successfully!**
|
62 |
-
|
63 |
-
**Input Statistics:**
|
64 |
-
β’ Words: {word_count}
|
65 |
-
β’ Characters: {char_count}
|
66 |
-
β’ Estimated duration: ~{word_count * 0.5:.1f} seconds
|
67 |
-
|
68 |
-
**Audio file ready for playback below** β¬οΈ
|
69 |
-
""".strip()
|
70 |
-
return output, filename, gr.update(visible=True, value=filename)
|
71 |
-
|
72 |
-
# Handle button click
|
73 |
-
def handle_task_processing(task, text):
|
74 |
if not text.strip():
|
75 |
-
return "
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
# Custom CSS
|
80 |
-
custom_css = """<style>
|
81 |
-
/* Same CSS as before, trimmed for brevity */
|
82 |
-
body, .gradio-container {
|
83 |
-
background-color: #0a0a0a !important;
|
84 |
-
color: #ffffff !important;
|
85 |
-
}
|
86 |
-
</style>"""
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
109 |
)
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
lines=8,
|
120 |
-
label="π Input Text",
|
121 |
-
placeholder="Enter your text here...",
|
122 |
-
info="Type or paste the text you want to process"
|
123 |
)
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
gr.Markdown("## π Results", elem_classes=["results-header"])
|
129 |
-
|
130 |
-
with gr.Row():
|
131 |
-
with gr.Column(scale=2):
|
132 |
-
output_text = gr.Textbox(
|
133 |
-
label="π Analysis Results",
|
134 |
-
lines=8,
|
135 |
-
interactive=False
|
136 |
)
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
143 |
)
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
history + [
|
156 |
-
(
|
157 |
-
message,
|
158 |
-
f"π§ Sentiment: {sentiment_pipeline(message)[0]['label']} (Confidence: {round(sentiment_pipeline(message)[0]['score'], 2)})"
|
159 |
)
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
165 |
)
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
# Launch
|
180 |
if __name__ == "__main__":
|
181 |
-
demo
|
182 |
-
|
183 |
-
debug=True,
|
184 |
-
show_error=True
|
185 |
-
)
|
|
|
1 |
import gradio as gr
|
2 |
+
import openai
|
3 |
from transformers import pipeline
|
4 |
from gtts import gTTS
|
5 |
import time
|
6 |
import os
|
7 |
|
8 |
+
# OpenAI Chatbot Class
|
9 |
+
class OpenAIChatbot:
|
10 |
+
def __init__(self, api_key: str = None):
|
11 |
+
self.client = None
|
12 |
+
self.model = "gpt-3.5-turbo"
|
13 |
+
if api_key:
|
14 |
+
self.set_api_key(api_key)
|
15 |
+
|
16 |
+
def set_api_key(self, api_key: str):
|
17 |
+
try:
|
18 |
+
self.client = openai.OpenAI(api_key=api_key)
|
19 |
+
self.client.models.list()
|
20 |
+
return "β
API Key set successfully!"
|
21 |
+
except Exception as e:
|
22 |
+
return f"β Error: {str(e)}"
|
23 |
+
|
24 |
+
def stream_chat(self, message: str, history: list, system_prompt: str = ""):
|
25 |
+
if not self.client:
|
26 |
+
history.append([message, "Please set your OpenAI API key first!"])
|
27 |
+
yield history
|
28 |
+
return
|
29 |
+
|
30 |
+
try:
|
31 |
+
messages = []
|
32 |
+
if system_prompt.strip():
|
33 |
+
messages.append({"role": "system", "content": system_prompt})
|
34 |
+
|
35 |
+
for chat_pair in history:
|
36 |
+
if len(chat_pair) >= 2:
|
37 |
+
messages.append({"role": "user", "content": chat_pair[0]})
|
38 |
+
messages.append({"role": "assistant", "content": chat_pair[1]})
|
39 |
+
|
40 |
+
messages.append({"role": "user", "content": message})
|
41 |
+
history.append([message, ""])
|
42 |
+
|
43 |
+
stream = self.client.chat.completions.create(
|
44 |
+
model=self.model,
|
45 |
+
messages=messages,
|
46 |
+
max_tokens=1000,
|
47 |
+
temperature=0.7,
|
48 |
+
stream=True
|
49 |
+
)
|
50 |
+
|
51 |
+
bot_response = ""
|
52 |
+
for chunk in stream:
|
53 |
+
if chunk.choices[0].delta.content is not None:
|
54 |
+
bot_response += chunk.choices[0].delta.content
|
55 |
+
history[-1] = [message, bot_response]
|
56 |
+
yield history
|
57 |
+
time.sleep(0.02)
|
58 |
+
|
59 |
+
except Exception as e:
|
60 |
+
history[-1] = [message, f"Error: {str(e)}"]
|
61 |
+
yield history
|
62 |
+
|
63 |
+
# Load Transformers models
|
64 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
65 |
summarization_pipeline = pipeline("summarization", model="RussianNLP/FRED-T5-Summarizer")
|
66 |
|
67 |
+
# Task functions
|
68 |
+
def analyze_sentiment(text):
|
69 |
if not text.strip():
|
70 |
+
return "Please enter text to analyze."
|
71 |
+
|
72 |
+
result = sentiment_pipeline(text)[0]
|
73 |
+
return f"**Sentiment:** {result['label']}\n**Confidence:** {result['score']:.3f}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
def summarize_text(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
if not text.strip():
|
77 |
+
return "Please enter text to summarize."
|
78 |
+
|
79 |
+
result = summarization_pipeline(text, max_length=100, min_length=30, do_sample=False)
|
80 |
+
return result[0]['summary_text']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
def text_to_speech(text):
|
83 |
+
if not text.strip():
|
84 |
+
return "Please enter text for TTS.", None
|
85 |
+
|
86 |
+
tts = gTTS(text)
|
87 |
+
filename = "tts_output.mp3"
|
88 |
+
tts.save(filename)
|
89 |
+
return f"Audio generated for {len(text.split())} words.", filename
|
90 |
+
|
91 |
+
# Initialize chatbot
|
92 |
+
chatbot = OpenAIChatbot()
|
93 |
+
|
94 |
+
# Create interface
|
95 |
+
def create_interface():
|
96 |
+
with gr.Blocks(title="AI Assistant") as demo:
|
97 |
+
gr.Markdown("# π€ Multi-Task AI Assistant")
|
98 |
+
|
99 |
+
with gr.Tabs():
|
100 |
+
# OpenAI Chat Tab
|
101 |
+
with gr.TabItem("π¬ OpenAI Chat"):
|
102 |
+
with gr.Row():
|
103 |
+
api_key_input = gr.Textbox(
|
104 |
+
label="OpenAI API Key",
|
105 |
+
type="password",
|
106 |
+
placeholder="sk-..."
|
107 |
)
|
108 |
+
set_key_btn = gr.Button("Set Key")
|
109 |
+
|
110 |
+
status = gr.Textbox(label="Status", interactive=False)
|
111 |
+
|
112 |
+
with gr.Row():
|
113 |
+
model_dropdown = gr.Dropdown(
|
114 |
+
choices=["gpt-3.5-turbo", "gpt-4"],
|
115 |
+
value="gpt-3.5-turbo",
|
116 |
+
label="Model"
|
|
|
|
|
|
|
|
|
117 |
)
|
118 |
+
system_prompt = gr.Textbox(
|
119 |
+
label="System Prompt",
|
120 |
+
placeholder="You are a helpful assistant..."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
)
|
122 |
+
|
123 |
+
chatbot_interface = gr.Chatbot(label="Chat", height=400)
|
124 |
+
|
125 |
+
with gr.Row():
|
126 |
+
msg_input = gr.Textbox(
|
127 |
+
placeholder="Type your message...",
|
128 |
+
show_label=False,
|
129 |
+
scale=4
|
130 |
)
|
131 |
+
send_btn = gr.Button("Send", variant="primary")
|
132 |
+
clear_btn = gr.Button("Clear")
|
133 |
+
|
134 |
+
# Sentiment Analysis Tab
|
135 |
+
with gr.TabItem("π Sentiment Analysis"):
|
136 |
+
with gr.Row():
|
137 |
+
with gr.Column():
|
138 |
+
sentiment_input = gr.Textbox(
|
139 |
+
label="Text to analyze",
|
140 |
+
lines=5,
|
141 |
+
placeholder="Enter text to analyze sentiment..."
|
|
|
|
|
|
|
|
|
142 |
)
|
143 |
+
sentiment_btn = gr.Button("Analyze", variant="primary")
|
144 |
+
|
145 |
+
with gr.Column():
|
146 |
+
sentiment_output = gr.Textbox(
|
147 |
+
label="Results",
|
148 |
+
lines=5,
|
149 |
+
interactive=False
|
150 |
)
|
151 |
+
|
152 |
+
# Summarization Tab
|
153 |
+
with gr.TabItem("π Summarization"):
|
154 |
+
with gr.Row():
|
155 |
+
with gr.Column():
|
156 |
+
summary_input = gr.Textbox(
|
157 |
+
label="Text to summarize",
|
158 |
+
lines=8,
|
159 |
+
placeholder="Enter long text to summarize..."
|
160 |
+
)
|
161 |
+
summary_btn = gr.Button("Summarize", variant="primary")
|
162 |
+
|
163 |
+
with gr.Column():
|
164 |
+
summary_output = gr.Textbox(
|
165 |
+
label="Summary",
|
166 |
+
lines=8,
|
167 |
+
interactive=False
|
168 |
+
)
|
169 |
+
|
170 |
+
# Text-to-Speech Tab
|
171 |
+
with gr.TabItem("π Text-to-Speech"):
|
172 |
+
with gr.Row():
|
173 |
+
with gr.Column():
|
174 |
+
tts_input = gr.Textbox(
|
175 |
+
label="Text to convert",
|
176 |
+
lines=5,
|
177 |
+
placeholder="Enter text to convert to speech..."
|
178 |
+
)
|
179 |
+
tts_btn = gr.Button("Generate Speech", variant="primary")
|
180 |
+
|
181 |
+
with gr.Column():
|
182 |
+
tts_status = gr.Textbox(label="Status", interactive=False)
|
183 |
+
tts_audio = gr.Audio(label="Generated Audio")
|
184 |
+
|
185 |
+
# Event handlers
|
186 |
+
def send_message(message, history, system_prompt):
|
187 |
+
if not message.strip():
|
188 |
+
return history, ""
|
189 |
+
|
190 |
+
for updated_history in chatbot.stream_chat(message, history, system_prompt):
|
191 |
+
yield updated_history, ""
|
192 |
+
|
193 |
+
# OpenAI Chat events
|
194 |
+
set_key_btn.click(
|
195 |
+
chatbot.set_api_key,
|
196 |
+
inputs=[api_key_input],
|
197 |
+
outputs=[status]
|
198 |
+
)
|
199 |
+
|
200 |
+
send_btn.click(
|
201 |
+
send_message,
|
202 |
+
inputs=[msg_input, chatbot_interface, system_prompt],
|
203 |
+
outputs=[chatbot_interface, msg_input]
|
204 |
+
)
|
205 |
+
|
206 |
+
msg_input.submit(
|
207 |
+
send_message,
|
208 |
+
inputs=[msg_input, chatbot_interface, system_prompt],
|
209 |
+
outputs=[chatbot_interface, msg_input]
|
210 |
+
)
|
211 |
+
|
212 |
+
clear_btn.click(lambda: None, outputs=[chatbot_interface])
|
213 |
+
|
214 |
+
# Other task events
|
215 |
+
sentiment_btn.click(
|
216 |
+
analyze_sentiment,
|
217 |
+
inputs=[sentiment_input],
|
218 |
+
outputs=[sentiment_output]
|
219 |
+
)
|
220 |
+
|
221 |
+
summary_btn.click(
|
222 |
+
summarize_text,
|
223 |
+
inputs=[summary_input],
|
224 |
+
outputs=[summary_output]
|
225 |
+
)
|
226 |
+
|
227 |
+
tts_btn.click(
|
228 |
+
text_to_speech,
|
229 |
+
inputs=[tts_input],
|
230 |
+
outputs=[tts_status, tts_audio]
|
231 |
+
)
|
232 |
+
|
233 |
+
return demo
|
234 |
|
|
|
235 |
if __name__ == "__main__":
|
236 |
+
demo = create_interface()
|
237 |
+
demo.launch(share=True)
|
|
|
|
|
|