AdrielAmoguis commited on
Commit
f69deff
·
1 Parent(s): 0f2ac5f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -10
app.py CHANGED
@@ -20,19 +20,20 @@ pageTitle = "Baybayin Instance Detection"
20
  msgWarning = "This demo was created by Adriel Amoguis and Miguel Flores for PCSC 2023"
21
  desc = """
22
  <center>
23
- Take a picture of some Baybayin text and upload it in the text box below.
24
  </center>
25
  """
26
 
27
 
28
- def snap(webcam, upload, model, conf, iou):
29
 
30
- if webcam is not None:
31
- image = webcam
32
- elif upload is not None:
33
- image = upload
34
- else:
35
- image = webcam
 
36
 
37
  # If no model selected, use M-Raw
38
  if model == None:
@@ -81,13 +82,16 @@ def snap(webcam, upload, model, conf, iou):
81
 
82
  demo = gr.Interface(
83
  snap,
84
- [gr.Webcam(type="numpy", label="Webcam"),
 
85
  gr.Image(source="upload", type="numpy", label="Baybayin Image"),
86
  gr.Radio(["M-Raw", "S-Raw", "N-Raw"]),
87
  gr.Slider(0, 1, value=0.6, label="Classifier Confidence Threshold"),
88
  gr.Slider(0, 1, value=0.7, label="IoU Threshold")],
89
  [gr.Image(type="numpy", label="Detected Baybayin")],
90
- title="Baybayin Instance Detection"
 
 
91
  ).queue()
92
 
93
  if __name__ == "__main__":
 
20
  msgWarning = "This demo was created by Adriel Amoguis and Miguel Flores for PCSC 2023"
21
  desc = """
22
  <center>
23
+ Take a picture of some Baybayin text and upload it in the Image Box on the left. You may choose which model to use just below that. You can also choose the confidence threshold and the IoU threshold using the sliders.
24
  </center>
25
  """
26
 
27
 
28
+ def snap(upload, model, conf, iou):
29
 
30
+ # if webcam is not None:
31
+ # image = webcam
32
+ # elif upload is not None:
33
+ # image = upload
34
+ # else:
35
+ # image = webcam
36
+ image = upload
37
 
38
  # If no model selected, use M-Raw
39
  if model == None:
 
82
 
83
  demo = gr.Interface(
84
  snap,
85
+ [
86
+ # gr.Webcam(type="numpy", label="Webcam"),
87
  gr.Image(source="upload", type="numpy", label="Baybayin Image"),
88
  gr.Radio(["M-Raw", "S-Raw", "N-Raw"]),
89
  gr.Slider(0, 1, value=0.6, label="Classifier Confidence Threshold"),
90
  gr.Slider(0, 1, value=0.7, label="IoU Threshold")],
91
  [gr.Image(type="numpy", label="Detected Baybayin")],
92
+ title="Baybayin Instance Detection",
93
+ article=msgWarning,
94
+ description=desc
95
  ).queue()
96
 
97
  if __name__ == "__main__":