|
import numpy as np |
|
from PIL import Image |
|
import gradio as gr |
|
from onnx import hub |
|
import onnxruntime as ort |
|
import onnx |
|
|
|
|
|
|
|
onnx_model = onnx.load("M-Raw.onnx") |
|
text = onnx.checker.check_model(onnx_model) |
|
print("The model is checked") |
|
|
|
def snap(image): |
|
image = Image.fromarray(image) |
|
print(image) |
|
print("-----------") |
|
image = image.resize((640, 640)) |
|
print(image) |
|
print("-----------") |
|
image = np.asarray(image, dtype=np.float32)/255 |
|
print(image) |
|
print("-----------") |
|
image = image[np.newaxis, ...].transpose((0,3,1,2)) |
|
ort_sess = ort.InferenceSession("M-Raw.onnx") |
|
output = ort_sess.run(["output0"], {"images": image}) |
|
print(output) |
|
return [output] |
|
|
|
|
|
demo = gr.Interface( |
|
snap, |
|
[gr.Image(source="webcam", tool=None, streaming=True)], |
|
["image"], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|