import numpy as np from PIL import Image import gradio as gr from onnx import hub import onnxruntime as ort import onnx onnx_model = onnx.load("M-Raw.onnx") text = onnx.checker.check_model(onnx_model) print("The model is checked") def snap(image): image = Image.fromarray(image) # np to pil print(image) print("-----------") image = image.resize((640, 640)) print(image) print("-----------") image = np.asarray(image) print(image) print("-----------") ort_sess = ort.InferenceSession("M-Raw.onnx") output = ort_sess.run(["output0"], {"images": np.array([image])}) return [output] demo = gr.Interface( snap, [gr.Image(source="webcam", tool=None, streaming=True)], ["image"], ) if __name__ == "__main__": demo.launch()