Spaces:
Build error
Build error
File size: 7,752 Bytes
287ac53 129a0bd 287ac53 129a0bd 287ac53 14cc71d 287ac53 3ebd0e9 287ac53 7505808 287ac53 e697892 287ac53 ce96ac1 287ac53 3ebd0e9 287ac53 129a0bd 287ac53 93d23ff 287ac53 93d23ff 287ac53 ce96ac1 287ac53 ce96ac1 287ac53 35a9fdb 287ac53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import sys
import time
from importlib.metadata import version
import spaces
import torch
import torchaudio
import torchaudio.transforms as T
import gradio as gr
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor
use_cuda = torch.cuda.is_available()
if use_cuda:
print('CUDA is available, setting correct inference_device variable.')
device = 'cuda'
torch_dtype = torch.float16
else:
device = 'cpu'
torch_dtype = torch.float32
# Config
model_name = "Yehor/w2v-bert-uk-v2.1-fp16"
min_duration = 0.5
max_duration = 60
concurrency_limit = 5
use_torch_compile = False
# Load the model
asr_model = AutoModelForCTC.from_pretrained(model_name, torch_dtype=torch_dtype, device_map=device)
processor = Wav2Vec2BertProcessor.from_pretrained(model_name)
if use_torch_compile:
asr_model = torch.compile(asr_model)
# Elements
examples = [
"example_1.wav",
"example_2.wav",
"example_3.wav",
"example_4.wav",
"example_5.wav",
"example_6.wav",
]
examples_table = """
| File | Text |
| ------------- | ------------- |
| `example_1.wav` | тема про яку не люблять говорити офіційні джерела у генштабі і міноборони це хімічна зброя окупанти вже тривалий час використовують хімічну зброю заборонену |
| `example_2.wav` | всіма конвенціями якщо спочатку це були гранати з дронів то тепер фіксують випадки застосування |
| `example_3.wav` | хімічних снарядів причому склад отруйної речовони різний а отже й наслідки для наших військових теж різні |
| `example_4.wav` | використовує на фронті все що має і хімічна зброя не вийняток тож з чим маємо справу розбиралася марія моганисян |
| `example_5.wav` | двох тисяч випадків застосування росіянами боєприпасів споряджених небезпечними хімічними речовинами |
| `example_6.wav` | на всі писані норми марія моганисян олександр моторний спецкор марафон єдині новини |
""".strip()
# https://www.tablesgenerator.com/markdown_tables
authors_table = """
## Authors
Follow them in social networks and **contact** if you need any help or have any questions:
| <img src="https://avatars.githubusercontent.com/u/7875085?v=4" width="100"> **Yehor Smoliakov** |
|-------------------------------------------------------------------------------------------------|
| https://t.me/smlkw in Telegram |
| https://x.com/yehor_smoliakov at X |
| https://github.com/egorsmkv at GitHub |
| https://huggingface.co/Yehor at Hugging Face |
| or use [email protected] |
""".strip()
description_head = f"""
# Speech-to-Text for Ukrainian v2.1
## Overview
This space uses https://huggingface.co/{model_name} model to recognize audio files.
> Due to resource limitations, audio duration **must not** exceed **{max_duration}** seconds.
""".strip()
description_foot = f"""
{authors_table}
""".strip()
transcription_value = """
Recognized text will appear here.
Choose **an example file** below the Run button, upload **your audio file**, or use **the microphone** to record something.
""".strip()
tech_env = f"""
#### Environment
- Python: {sys.version}
- Torch device: {device}
- Torch dtype: {torch_dtype}
- Use torch.compile: {use_torch_compile}
""".strip()
tech_libraries = f"""
#### Libraries
- torch: {version('torch')}
- torchaudio: {version('torchaudio')}
- transformers: {version('transformers')}
- accelerate: {version('accelerate')}
- gradio: {version('gradio')}
""".strip()
@spaces.GPU
def inference(audio_path, progress=gr.Progress()):
if not audio_path:
raise gr.Error("Please upload an audio file.")
gr.Info("Starting...", duration=1)
progress(0, desc="Recognizing")
meta = torchaudio.info(audio_path)
duration = meta.num_frames / meta.sample_rate
if duration < min_duration:
raise gr.Error(
f"The duration of the file is less than {min_duration} seconds, it is {round(duration, 2)} seconds."
)
if duration > max_duration:
raise gr.Error(f"The duration of the file exceeds {max_duration} seconds.")
paths = [
audio_path,
]
results = []
for path in progress.tqdm(paths, desc="Recognizing...", unit="file"):
t0 = time.time()
meta = torchaudio.info(audio_path)
audio_duration = meta.num_frames / meta.sample_rate
audio_input, sr = torchaudio.load(path)
if meta.num_channels > 1:
audio_input = torch.mean(audio_input, dim=0, keepdim=True)
if meta.sample_rate != 16_000:
resampler = T.Resample(sr, 16_000, dtype=audio_input.dtype)
audio_input = resampler(audio_input)
audio_input = audio_input.squeeze().numpy()
features = processor([audio_input], sampling_rate=16_000).input_features
features = torch.tensor(features).to(device)
if torch_dtype == torch.float16:
features = features.half()
with torch.inference_mode():
logits = asr_model(features).logits
predicted_ids = torch.argmax(logits, dim=-1)
predictions = processor.batch_decode(predicted_ids)
if not predictions:
predictions = "-"
elapsed_time = round(time.time() - t0, 2)
rtf = round(elapsed_time / audio_duration, 4)
audio_duration = round(audio_duration, 2)
results.append(
{
"path": path.split("/")[-1],
"transcription": "\n".join(predictions),
"audio_duration": audio_duration,
"rtf": rtf,
}
)
gr.Success("Finished!", duration=0.5)
result_texts = []
for result in results:
result_texts.append(f'**{result["path"]}**')
result_texts.append("\n\n")
result_texts.append(f'> {result["transcription"]}')
result_texts.append("\n\n")
result_texts.append(f'**Audio duration**: {result["audio_duration"]}')
result_texts.append("\n")
result_texts.append(f'**Real-Time Factor**: {result["rtf"]}')
return "\n".join(result_texts)
demo = gr.Blocks(
title="Speech-to-Text for Ukrainian",
analytics_enabled=False,
theme=gr.themes.Base(),
)
with demo:
gr.Markdown(description_head)
gr.Markdown("## Usage")
with gr.Column():
audio_file = gr.Audio(label="Audio file", type="filepath")
transcription = gr.Markdown(
label="Transcription",
value=transcription_value,
)
gr.Button("Run").click(
inference,
concurrency_limit=concurrency_limit,
inputs=audio_file,
outputs=transcription,
)
with gr.Row():
gr.Examples(label="Choose an example", inputs=audio_file, examples=examples)
gr.Markdown(examples_table)
gr.Markdown(description_foot)
gr.Markdown("### Gradio app uses:")
gr.Markdown(tech_env)
gr.Markdown(tech_libraries)
if __name__ == "__main__":
demo.queue()
demo.launch()
|