Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,8 @@ import time
|
|
3 |
|
4 |
from importlib.metadata import version
|
5 |
|
|
|
|
|
6 |
import torch
|
7 |
import torchaudio
|
8 |
import torchaudio.transforms as T
|
@@ -11,6 +13,16 @@ import gradio as gr
|
|
11 |
|
12 |
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Config
|
15 |
model_name = "Yehor/w2v-bert-2.0-uk-v2.1"
|
16 |
|
@@ -20,10 +32,6 @@ max_duration = 60
|
|
20 |
concurrency_limit = 5
|
21 |
use_torch_compile = False
|
22 |
|
23 |
-
# Torch
|
24 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
26 |
-
|
27 |
# Load the model
|
28 |
asr_model = AutoModelForCTC.from_pretrained(model_name, torch_dtype=torch_dtype, device_map=device)
|
29 |
processor = Wav2Vec2BertProcessor.from_pretrained(model_name)
|
@@ -117,6 +125,7 @@ tech_libraries = f"""
|
|
117 |
""".strip()
|
118 |
|
119 |
|
|
|
120 |
def inference(audio_path, progress=gr.Progress()):
|
121 |
if not audio_path:
|
122 |
raise gr.Error("Please upload an audio file.")
|
|
|
3 |
|
4 |
from importlib.metadata import version
|
5 |
|
6 |
+
import spaces
|
7 |
+
|
8 |
import torch
|
9 |
import torchaudio
|
10 |
import torchaudio.transforms as T
|
|
|
13 |
|
14 |
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor
|
15 |
|
16 |
+
use_cuda = torch.cuda.is_available()
|
17 |
+
|
18 |
+
if use_cuda:
|
19 |
+
print('CUDA is available, setting correct inference_device variable.')
|
20 |
+
device = 'cuda'
|
21 |
+
torch_dtype = torch.float16
|
22 |
+
else:
|
23 |
+
device = 'cpu'
|
24 |
+
torch_dtype = torch.float32
|
25 |
+
|
26 |
# Config
|
27 |
model_name = "Yehor/w2v-bert-2.0-uk-v2.1"
|
28 |
|
|
|
32 |
concurrency_limit = 5
|
33 |
use_torch_compile = False
|
34 |
|
|
|
|
|
|
|
|
|
35 |
# Load the model
|
36 |
asr_model = AutoModelForCTC.from_pretrained(model_name, torch_dtype=torch_dtype, device_map=device)
|
37 |
processor = Wav2Vec2BertProcessor.from_pretrained(model_name)
|
|
|
125 |
""".strip()
|
126 |
|
127 |
|
128 |
+
@spaces.GPU
|
129 |
def inference(audio_path, progress=gr.Progress()):
|
130 |
if not audio_path:
|
131 |
raise gr.Error("Please upload an audio file.")
|