File size: 16,070 Bytes
7af8df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5da9a16
 
 
 
 
 
 
 
7af8df4
5da9a16
 
 
7af8df4
5da9a16
7af8df4
 
 
 
 
 
 
 
 
 
 
5da9a16
7af8df4
 
 
 
 
 
5da9a16
7af8df4
5da9a16
7af8df4
 
 
5da9a16
 
 
 
 
 
 
 
 
 
7af8df4
 
5da9a16
 
7af8df4
 
5da9a16
 
7af8df4
 
5da9a16
7af8df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5da9a16
 
7af8df4
5da9a16
 
 
7af8df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5da9a16
 
 
 
 
 
 
 
 
7af8df4
5da9a16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7af8df4
 
 
5da9a16
 
 
 
7af8df4
 
 
5da9a16
7af8df4
5da9a16
7af8df4
 
5da9a16
 
 
 
 
 
7af8df4
 
 
5da9a16
7af8df4
 
5da9a16
7af8df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5da9a16
 
7af8df4
5da9a16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7af8df4
5da9a16
 
 
 
 
 
7af8df4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# from transformers import (
#     AutoTokenizer, 
#     AutoModelForSeq2SeqLM,
#     AutoModelForTokenClassification,
#     pipeline
# )
# from keybert import KeyBERT
# from summarizer import Summarizer
# import re
# import nltk
# nltk.download('punkt')

# class TextProcessor:
#     def __init__(self):
#         # Initialize summarization model
#         self.summarizer = Summarizer('bert-base-multilingual-cased')
        
#         # Initialize KeyBERT for keyword extraction
#         self.kw_model = KeyBERT('paraphrase-multilingual-MiniLM-L12-v2')
        
#         # Initialize NER for action item detection
#         self.ner_pipeline = pipeline(
#             "ner",
#             model="cahya/bert-base-indonesian-NER",
#             aggregation_strategy="simple"
#         )
        
#                 # Action item patterns
#         self.action_patterns = [
#             r"akan\s+(\w+)",
#             r"harus\s+(\w+)",
#             r"perlu\s+(\w+)",
#             r"mohon\s+(\w+)",
#             r"tolong\s+(\w+)",
#             r"segera\s+(\w+)",
#             r"follow\s*up",
#             r"action\s*item",
#             r"to\s*do",
#             r"deadline"
#         ]
        
#         # Decision patterns
#         self.decision_patterns = [
#             r"(diputuskan|memutuskan)\s+(.+)",
#             r"(disepakati|menyepakati)\s+(.+)",
#             r"(setuju|persetujuan)\s+(.+)",
#             r"keputusan(?:nya)?\s+(.+)",
#             r"final(?:isasi)?\s+(.+)"
#         ]
    
#     def summarize_transcript(self, transcript_segments, ratio=0.3):
#         """
#         Hierarchical summarization untuk transcript panjang
#         """
#         # Gabungkan text dari semua segments
#         full_text = ' '.join([seg['text'] for seg in transcript_segments])
        
#         # Chunking untuk dokumen panjang
#         chunks = self._create_chunks(full_text)
        
#         if len(chunks) == 1:
#             # Direct summarization untuk dokumen pendek
#             return self.summarizer(
#                 chunks[0], 
#                 ratio=ratio,
#                 num_sentences=5
#             )
#         else:
#             # Hierarchical summarization
#             return self._hierarchical_summarization(chunks, ratio)
    
#     def extract_key_information(self, transcript_segments):
#         """
#         Extract action items, decisions, dan key topics
#         """
#         full_text = ' '.join([seg['text'] for seg in transcript_segments])
        
#         # Extract keywords/topics
#         keywords = self.kw_model.extract_keywords(
#             full_text,
#             keyphrase_ngram_range=(1, 3),
#             stop_words='indonesian',
#             top_n=10,
#             use_mmr=True,
#             diversity=0.5
#         )
        
#         # Extract action items dan decisions
#         action_items = []
#         decisions = []
        
#         for segment in transcript_segments:
#             # Check for action items
#             if self._is_action_item(segment['text']):
#                 action_items.append({
#                     'text': segment['text'],
#                     'speaker': segment['speaker'],
#                     'timestamp': f"{segment['start']:.1f}s",
#                     'entities': self._extract_entities(segment['text'])
#                 })
            
#             # Check for decisions
#             if self._is_decision(segment['text']):
#                 decisions.append({
#                     'text': segment['text'],
#                     'speaker': segment['speaker'],
#                     'timestamp': f"{segment['start']:.1f}s"
#                 })
        
#         return {
#             'keywords': keywords,
#             'action_items': action_items,
#             'decisions': decisions
#         }
    
#     def _create_chunks(self, text, max_length=3000):
#         """
#         Create overlapping chunks for long documents
#         """
#         sentences = nltk.sent_tokenize(text)
#         chunks = []
#         current_chunk = []
#         current_length = 0
        
#         for sentence in sentences:
#             sentence_length = len(sentence)
            
#             if current_length + sentence_length > max_length and current_chunk:
#                 chunks.append(' '.join(current_chunk))
#                 # Keep last 2 sentences for overlap
#                 current_chunk = current_chunk[-2:] if len(current_chunk) > 2 else []
#                 current_length = sum(len(s) for s in current_chunk)
            
#             current_chunk.append(sentence)
#             current_length += sentence_length
        
#         if current_chunk:
#             chunks.append(' '.join(current_chunk))
        
#         return chunks
    
#     def _hierarchical_summarization(self, chunks, ratio):
#         """
#         Two-level summarization for long documents
#         """
#         # Level 1: Summarize each chunk
#         chunk_summaries = []
#         for chunk in chunks:
#             summary = self.summarizer(
#                 chunk,
#                 ratio=0.4,  # Higher ratio for first level
#                 num_sentences=4
#             )
#             chunk_summaries.append(summary)
        
#         # Level 2: Summarize the summaries
#         combined_summary = ' '.join(chunk_summaries)
#         final_summary = self.summarizer(
#             combined_summary,
#             ratio=ratio,
#             num_sentences=6
#         )
        
#         return final_summary
    
#     def _is_action_item(self, text):
#         """
#         Detect if text contains action item
#         """
#         text_lower = text.lower()
        
#         # Check patterns
#         for pattern in self.action_patterns:
#             if re.search(pattern, text_lower):
#                 return True
        
#         # Check for imperative sentences
#         first_word = text.split()[0].lower() if text.split() else ""
#         imperative_verbs = [
#             'lakukan', 'buat', 'siapkan', 'kirim', 'hubungi',
#             'follow', 'prepare', 'send', 'contact', 'create'
#         ]
        
#         return first_word in imperative_verbs
    
#     def _is_decision(self, text):
#         """
#         Detect if text contains decision
#         """
#         text_lower = text.lower()
        
#         for pattern in self.decision_patterns:
#             if re.search(pattern, text_lower):
#                 return True
        
#         return False
    
#     def _extract_entities(self, text):
#         """
#         Extract named entities (person, date, etc)
#         """
#         entities = self.ner_pipeline(text)
        
#         return {
#             'persons': [e['word'] for e in entities if e['entity_group'] == 'PER'],
#             'organizations': [e['word'] for e in entities if e['entity_group'] == 'ORG'],
#             'dates': self._extract_dates(text)
#         }
    
#     def _extract_dates(self, text):
#         """
#         Extract date mentions
#         """
#         date_patterns = [
#             r'\d{1,2}[-/]\d{1,2}[-/]\d{2,4}',
#             r'(senin|selasa|rabu|kamis|jumat|sabtu|minggu)',
#             r'(besok|lusa|minggu\s+depan|bulan\s+depan)',
#             r'(januari|februari|maret|april|mei|juni|juli|agustus|september|oktober|november|desember)'
#         ]
        
#         dates = []
#         for pattern in date_patterns:
#             matches = re.findall(pattern, text.lower())
#             dates.extend(matches)
        
#         return dates



from transformers import (
    AutoTokenizer, 
    AutoModelForSeq2SeqLM,
    pipeline
)
from keybert import KeyBERT
import re
import nltk
from typing import List, Dict

class TextProcessor:
    def __init__(self):
        print("Initializing Text Processor...")
        
        # Use transformers pipeline for summarization instead
        try:
            self.summarizer = pipeline(
                "summarization", 
                model="sshleifer/distilbart-cnn-12-6",
                device=-1  # CPU
            )
        except:
            # Fallback to simple extractive summarization
            self.summarizer = None
            print("Warning: Summarization model not loaded, using fallback")
        
        # Initialize KeyBERT for keyword extraction
        try:
            self.kw_model = KeyBERT('paraphrase-multilingual-MiniLM-L12-v2')
        except:
            self.kw_model = None
            print("Warning: KeyBERT not loaded")
        
        # Action item patterns
        self.action_patterns = [
            r"akan\s+(\w+)", r"harus\s+(\w+)", r"perlu\s+(\w+)",
            r"mohon\s+(\w+)", r"tolong\s+(\w+)", r"segera\s+(\w+)",
            r"follow\s*up", r"action\s*item", r"to\s*do", r"deadline"
        ]
        
        # Decision patterns
        self.decision_patterns = [
            r"(diputuskan|memutuskan)\s+(.+)",
            r"(disepakati|menyepakati)\s+(.+)",
            r"(setuju|persetujuan)\s+(.+)",
            r"keputusan(?:nya)?\s+(.+)",
            r"final(?:isasi)?\s+(.+)"
        ]
        
        print("Text Processor ready!")
    
    def summarize_transcript(self, transcript_segments, ratio=0.3):
        """Summarization with fallback methods"""
        # Combine text from all segments
        full_text = ' '.join([seg['text'] for seg in transcript_segments])
        
        if not full_text.strip():
            return "No content to summarize."
        
        # Try using the summarization pipeline
        if self.summarizer:
            try:
                # Split into chunks if too long
                max_chunk_length = 1024
                if len(full_text) > max_chunk_length:
                    chunks = self._split_into_chunks(full_text, max_chunk_length)
                    summaries = []
                    
                    for chunk in chunks[:3]:  # Limit to first 3 chunks
                        summary = self.summarizer(
                            chunk, 
                            max_length=130, 
                            min_length=30, 
                            do_sample=False
                        )[0]['summary_text']
                        summaries.append(summary)
                    
                    return ' '.join(summaries)
                else:
                    return self.summarizer(
                        full_text, 
                        max_length=150, 
                        min_length=30, 
                        do_sample=False
                    )[0]['summary_text']
            except:
                pass
        
        # Fallback: Simple extractive summarization
        return self._simple_extractive_summary(full_text, ratio)
    
    def extract_key_information(self, transcript_segments):
        """Extract action items, decisions, and key topics"""
        full_text = ' '.join([seg['text'] for seg in transcript_segments])
        
        # Extract keywords/topics
        keywords = []
        if self.kw_model:
            try:
                keywords = self.kw_model.extract_keywords(
                    full_text,
                    keyphrase_ngram_range=(1, 3),
                    stop_words=None,
                    top_n=10,
                    use_mmr=True,
                    diversity=0.5
                )
            except:
                pass
        
        # If KeyBERT fails, use simple frequency-based extraction
        if not keywords:
            keywords = self._extract_keywords_simple(full_text)
        
        # Extract action items and decisions
        action_items = []
        decisions = []
        
        for segment in transcript_segments:
            # Check for action items
            if self._is_action_item(segment['text']):
                action_items.append({
                    'text': segment['text'],
                    'speaker': segment['speaker'],
                    'timestamp': f"{segment['start']:.1f}s"
                })
            
            # Check for decisions
            if self._is_decision(segment['text']):
                decisions.append({
                    'text': segment['text'],
                    'speaker': segment['speaker'],
                    'timestamp': f"{segment['start']:.1f}s"
                })
        
        return {
            'keywords': keywords,
            'action_items': action_items,
            'decisions': decisions
        }
    
    def _split_into_chunks(self, text, max_length):
        """Split text into chunks"""
        words = text.split()
        chunks = []
        current_chunk = []
        current_length = 0
        
        for word in words:
            current_chunk.append(word)
            current_length += len(word) + 1
            
            if current_length >= max_length:
                chunks.append(' '.join(current_chunk))
                current_chunk = []
                current_length = 0
        
        if current_chunk:
            chunks.append(' '.join(current_chunk))
        
        return chunks
    
    def _simple_extractive_summary(self, text, ratio=0.3):
        """Simple extractive summarization fallback"""
        sentences = nltk.sent_tokenize(text)
        
        if len(sentences) <= 3:
            return text
        
        # Calculate number of sentences to include
        num_sentences = max(3, int(len(sentences) * ratio))
        
        # Simple scoring: prefer sentences with more content words
        scored_sentences = []
        for i, sent in enumerate(sentences):
            # Score based on length and position
            score = len(sent.split())
            if i < 3:  # Boost first sentences
                score *= 1.5
            if i >= len(sentences) - 2:  # Boost last sentences
                score *= 1.2
            scored_sentences.append((score, sent))
        
        # Sort by score and select top sentences
        scored_sentences.sort(reverse=True)
        selected = [sent for _, sent in scored_sentences[:num_sentences]]
        
        # Return in original order
        return ' '.join([s for s in sentences if s in selected])
    
    def _extract_keywords_simple(self, text):
        """Simple keyword extraction fallback"""
        # Remove common words
        stopwords = {
            'yang', 'dan', 'di', 'ke', 'dari', 'untuk', 'pada', 'adalah', 
            'ini', 'itu', 'dengan', 'tersebut', 'dalam', 'dapat', 'akan',
            'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 
            'for', 'of', 'with', 'as', 'is', 'was', 'are', 'were'
        }
        
        # Count word frequency
        words = re.findall(r'\b\w+\b', text.lower())
        word_freq = {}
        
        for word in words:
            if len(word) > 3 and word not in stopwords:
                word_freq[word] = word_freq.get(word, 0) + 1
        
        # Get top keywords
        keywords = sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:10]
        
        # Format like KeyBERT output
        return [(word, freq/len(words)) for word, freq in keywords]
    
    def _is_action_item(self, text):
        """Detect if text contains action item"""
        text_lower = text.lower()
        
        # Check patterns
        for pattern in self.action_patterns:
            if re.search(pattern, text_lower):
                return True
        
        # Check for imperative sentences
        first_word = text.split()[0].lower() if text.split() else ""
        imperative_verbs = [
            'lakukan', 'buat', 'siapkan', 'kirim', 'hubungi',
            'follow', 'prepare', 'send', 'contact', 'create'
        ]
        
        return first_word in imperative_verbs
    
    def _is_decision(self, text):
        """Detect if text contains decision"""
        text_lower = text.lower()
        
        for pattern in self.decision_patterns:
            if re.search(pattern, text_lower):
                return True
        
        return False