from transformers import AutoModelForCausalLM, AutoTokenizer import torch import spaces import gradio as gr model_id = "Qwen/Qwen3-1.7B" model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype = "auto" ) tokenizer = AutoTokenizer.from_pretrained(model_id) if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") model = model.to(device) @spaces.GPU def respuesta( message, history, system_message, max_tokens, temperature, top_p ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True ).to(model.device) model_inputs = tokenizer([text], return_tensor='pt') outputs = model.generate( **model_inputs, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p ) response = '' for message in tokenizer.decode( outputs[0][input_ids.shape[-1]:], skip_special_tokens=True ): response += message yield response demo = gr.ChatInterface( respuesta, additional_inputs=[ gr.Textbox(value="Eres un chatbot amigable", label="System messaage"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ] ) if __name__ == "__main__": demo.launch()