Spaces:
Runtime error
Runtime error
Commit
·
766ebf2
1
Parent(s):
3702bb5
Add .ipynb_checkpoints to .gitignore and remove from tracking
Browse files
.gitignore
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
__pycache__/
|
| 2 |
*.pyc
|
| 3 |
-
|
|
|
|
|
|
| 1 |
__pycache__/
|
| 2 |
*.pyc
|
| 3 |
+
.ipynb_checkpoints
|
| 4 |
+
*/.ipynb_checkpoints/*
|
.ipynb_checkpoints/app-checkpoint.py
DELETED
|
@@ -1,644 +0,0 @@
|
|
| 1 |
-
import argparse
|
| 2 |
-
import json
|
| 3 |
-
import time
|
| 4 |
-
import os
|
| 5 |
-
import glob
|
| 6 |
-
import random
|
| 7 |
-
import shutil
|
| 8 |
-
from enum import Enum
|
| 9 |
-
from threading import Thread
|
| 10 |
-
from multiprocessing import Process, Value
|
| 11 |
-
|
| 12 |
-
import gradio as gr
|
| 13 |
-
import pytoml
|
| 14 |
-
from loguru import logger
|
| 15 |
-
import spaces
|
| 16 |
-
|
| 17 |
-
from huixiangdou.service import Worker, llm_serve, ArticleRetrieval, CacheRetriever, FeatureStore, FileOperation
|
| 18 |
-
|
| 19 |
-
class PARAM_CODE(Enum):
|
| 20 |
-
"""Parameter code."""
|
| 21 |
-
SUCCESS = 0
|
| 22 |
-
FAILED = 1
|
| 23 |
-
ERROR = 2
|
| 24 |
-
|
| 25 |
-
def parse_args():
|
| 26 |
-
"""Parse args."""
|
| 27 |
-
parser = argparse.ArgumentParser(description='Worker.')
|
| 28 |
-
parser.add_argument('--work_dir',
|
| 29 |
-
type=str,
|
| 30 |
-
default='workdir',
|
| 31 |
-
help='Working directory.')
|
| 32 |
-
parser.add_argument('--repo_dir',
|
| 33 |
-
type=str,
|
| 34 |
-
default='repodir',
|
| 35 |
-
help='Repository directory.')
|
| 36 |
-
parser.add_argument(
|
| 37 |
-
'--config_path',
|
| 38 |
-
default='config.ini',
|
| 39 |
-
type=str,
|
| 40 |
-
help='Worker configuration path. Default value is config.ini')
|
| 41 |
-
parser.add_argument('--standalone',
|
| 42 |
-
action='store_true',
|
| 43 |
-
default=True,
|
| 44 |
-
help='Auto deploy required Hybrid LLM Service.')
|
| 45 |
-
args = parser.parse_args()
|
| 46 |
-
return args
|
| 47 |
-
|
| 48 |
-
def update_remote_buttons(remote):
|
| 49 |
-
if remote:
|
| 50 |
-
return [
|
| 51 |
-
gr.Markdown("[如何配置API]('https://github.com/jabberwockyang/MedicalReviewAgent/blob/main/README.md')",
|
| 52 |
-
visible=True),
|
| 53 |
-
gr.Dropdown(["kimi", "deepseek", "zhipuai",'gpt'],
|
| 54 |
-
label="选择大模型提供商",
|
| 55 |
-
interactive=True,visible=True),
|
| 56 |
-
gr.Textbox(label="您的API",lines = 1,
|
| 57 |
-
interactive=True,visible=True),
|
| 58 |
-
gr.Dropdown([],label="选择模型",
|
| 59 |
-
interactive=True,visible=True)
|
| 60 |
-
]
|
| 61 |
-
else:
|
| 62 |
-
return [
|
| 63 |
-
gr.Markdown("[如何配置API]('https://github.com/jabberwockyang/MedicalReviewAgent/blob/main/README.md')",
|
| 64 |
-
visible=False),
|
| 65 |
-
gr.Dropdown(["kimi", "deepseek", "zhipuai",'gpt'],
|
| 66 |
-
label="选择大模型提供商",
|
| 67 |
-
interactive=False,visible=False),
|
| 68 |
-
gr.Textbox(label="您的API",lines = 1,
|
| 69 |
-
interactive=False,visible=False),
|
| 70 |
-
gr.Dropdown([],label="选择模型",
|
| 71 |
-
interactive=False,visible=False)
|
| 72 |
-
]
|
| 73 |
-
|
| 74 |
-
def udate_model_dropdown(remote_company):
|
| 75 |
-
model_choices = {
|
| 76 |
-
'kimi': ['moonshot-v1-128k'],
|
| 77 |
-
'deepseek': ['deepseek-chat'],
|
| 78 |
-
'zhipuai': ['glm-4'],
|
| 79 |
-
'gpt': ['gpt-4-32k-0613','gpt-3.5-turbo']
|
| 80 |
-
}
|
| 81 |
-
return gr.Dropdown(choices= model_choices[remote_company])
|
| 82 |
-
|
| 83 |
-
def update_remote_config(remote_ornot,remote_company = None,api = None,model = None):
|
| 84 |
-
with open(CONFIG_PATH, encoding='utf8') as f:
|
| 85 |
-
config = pytoml.load(f)
|
| 86 |
-
|
| 87 |
-
if remote_ornot:
|
| 88 |
-
if remote_company == None or api == None or model == None:
|
| 89 |
-
raise ValueError('remote_company, api, model not provided')
|
| 90 |
-
config['llm']['enable_local'] = 0
|
| 91 |
-
config['llm']['enable_remote'] = 1
|
| 92 |
-
config['llm']['server']['remote_type'] = remote_company
|
| 93 |
-
config['llm']['server']['remote_api_key'] = api
|
| 94 |
-
config['llm']['server']['remote_llm_model'] = model
|
| 95 |
-
else:
|
| 96 |
-
config['llm']['enable_local'] = 1
|
| 97 |
-
config['llm']['enable_remote'] = 0
|
| 98 |
-
with open(CONFIG_PATH, 'w') as f:
|
| 99 |
-
pytoml.dump(config, f)
|
| 100 |
-
return gr.Button("配置已保存")
|
| 101 |
-
|
| 102 |
-
@spaces.GPU
|
| 103 |
-
def get_ready(query:str,chunksize=None,k=None):
|
| 104 |
-
|
| 105 |
-
with open(CONFIG_PATH, encoding='utf8') as f:
|
| 106 |
-
config = pytoml.load(f)
|
| 107 |
-
workdir = config['feature_store']['work_dir']
|
| 108 |
-
repodir = config['feature_store']['repo_dir']
|
| 109 |
-
|
| 110 |
-
if query == 'repo_work': # no need to return assistant
|
| 111 |
-
return repodir, workdir, config
|
| 112 |
-
theme = ''
|
| 113 |
-
try:
|
| 114 |
-
with open(os.path.join(config['feature_store']['repo_dir'],'config.json'), 'r') as f:
|
| 115 |
-
repo_config = json.load(f)
|
| 116 |
-
theme = ' '.join(repo_config['keywords'])
|
| 117 |
-
except:
|
| 118 |
-
pass
|
| 119 |
-
|
| 120 |
-
if query == 'annotation':
|
| 121 |
-
if not chunksize or not k:
|
| 122 |
-
raise ValueError('chunksize or k not provided')
|
| 123 |
-
chunkdir = os.path.join(workdir, f'chunksize_{chunksize}')
|
| 124 |
-
clusterdir = os.path.join(chunkdir, 'cluster_features', f'cluster_features_{k}')
|
| 125 |
-
assistant = Worker(work_dir=chunkdir, config_path=CONFIG_PATH,language='en')
|
| 126 |
-
samples_json = os.path.join(clusterdir,'samples.json')
|
| 127 |
-
with open(samples_json, 'r') as f:
|
| 128 |
-
samples = json.load(f)
|
| 129 |
-
f.close()
|
| 130 |
-
return clusterdir, samples, assistant, theme
|
| 131 |
-
|
| 132 |
-
elif query == 'inspiration':
|
| 133 |
-
if not chunksize or not k:
|
| 134 |
-
raise ValueError('chunksize or k not provided')
|
| 135 |
-
|
| 136 |
-
chunkdir = os.path.join(workdir, f'chunksize_{chunksize}')
|
| 137 |
-
clusterdir = os.path.join(chunkdir, 'cluster_features', f'cluster_features_{k}')
|
| 138 |
-
assistant = Worker(work_dir=chunkdir, config_path=CONFIG_PATH,language='en')
|
| 139 |
-
annofile = os.path.join(clusterdir,'annotation.jsonl')
|
| 140 |
-
with open(annofile, 'r') as f:
|
| 141 |
-
annoresult = f.readlines()
|
| 142 |
-
|
| 143 |
-
f.close()
|
| 144 |
-
annoresult = [json.loads(obj) for obj in annoresult]
|
| 145 |
-
return clusterdir, annoresult, assistant, theme
|
| 146 |
-
elif query == 'summarize': # no need for params k
|
| 147 |
-
if not chunksize:
|
| 148 |
-
raise ValueError('chunksize not provided')
|
| 149 |
-
chunkdir = os.path.join(workdir, f'chunksize_{chunksize}')
|
| 150 |
-
assistant = Worker(work_dir=chunkdir, config_path=CONFIG_PATH,language='en')
|
| 151 |
-
return assistant,theme
|
| 152 |
-
|
| 153 |
-
else:
|
| 154 |
-
raise ValueError('query not recognized')
|
| 155 |
-
|
| 156 |
-
def update_repo_info():
|
| 157 |
-
with open(CONFIG_PATH, encoding='utf8') as f:
|
| 158 |
-
config = pytoml.load(f)
|
| 159 |
-
repodir = config['feature_store']['repo_dir']
|
| 160 |
-
if os.path.exists(repodir):
|
| 161 |
-
pdffiles = glob.glob(os.path.join(repodir, '*.pdf'))
|
| 162 |
-
number_of_pdf = len(pdffiles)
|
| 163 |
-
if os.path.exists(os.path.join(repodir,'config.json')):
|
| 164 |
-
|
| 165 |
-
with open(os.path.join(repodir,'config.json'), 'r') as f:
|
| 166 |
-
repo_config = json.load(f)
|
| 167 |
-
|
| 168 |
-
keywords = repo_config['keywords']
|
| 169 |
-
length = repo_config['len']
|
| 170 |
-
retmax = repo_config['retmax']
|
| 171 |
-
|
| 172 |
-
return keywords,length,retmax,number_of_pdf
|
| 173 |
-
else:
|
| 174 |
-
return None,None,None,number_of_pdf
|
| 175 |
-
else:
|
| 176 |
-
return None,None,None,None
|
| 177 |
-
|
| 178 |
-
def upload_file(files):
|
| 179 |
-
repodir, workdir, _ = get_ready('repo_work')
|
| 180 |
-
if not os.path.exists(repodir):
|
| 181 |
-
os.makedirs(repodir)
|
| 182 |
-
|
| 183 |
-
for file in files:
|
| 184 |
-
destination_path = os.path.join(repodir, os.path.basename(file.name))
|
| 185 |
-
|
| 186 |
-
shutil.copy(file.name, destination_path)
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
return files
|
| 190 |
-
|
| 191 |
-
def generate_articles_repo(keywords:str,retmax:int):
|
| 192 |
-
keys= [k.strip() for k in keywords.split('\n')]
|
| 193 |
-
repodir, _, _ = get_ready('repo_work')
|
| 194 |
-
|
| 195 |
-
articelfinder = ArticleRetrieval(keywords = keys,
|
| 196 |
-
repo_dir = repodir,
|
| 197 |
-
retmax = retmax)
|
| 198 |
-
articelfinder.initiallize()
|
| 199 |
-
return update_repo()
|
| 200 |
-
|
| 201 |
-
def delete_articles_repo():
|
| 202 |
-
# 在这里运行生成数据库的函数
|
| 203 |
-
repodir, workdir, _ = get_ready('repo_work')
|
| 204 |
-
if os.path.exists(repodir):
|
| 205 |
-
shutil.rmtree(repodir)
|
| 206 |
-
if os.path.exists(workdir):
|
| 207 |
-
shutil.rmtree(workdir)
|
| 208 |
-
|
| 209 |
-
return gr.Textbox(label="文献库概况",lines =3,
|
| 210 |
-
value = '文献库和相关数据库已删除',
|
| 211 |
-
visible = True)
|
| 212 |
-
|
| 213 |
-
def update_repo():
|
| 214 |
-
keys,len,retmax,pdflen = update_repo_info()
|
| 215 |
-
if keys:
|
| 216 |
-
newinfo = f"搜索得到文献:\n 关键词:{keys}\n 文献数量:{len}\n 获取上限:{retmax}\n\n上传文献:\n 数量:{pdflen}"
|
| 217 |
-
else:
|
| 218 |
-
if pdflen:
|
| 219 |
-
newinfo = f'搜索得到文献:无\n上传文献:\n 数量:{pdflen}'
|
| 220 |
-
else:
|
| 221 |
-
newinfo = '目前还没有文献库'
|
| 222 |
-
|
| 223 |
-
return gr.Textbox(label="文献库概况",lines =1,
|
| 224 |
-
value = newinfo,
|
| 225 |
-
visible = True)
|
| 226 |
-
|
| 227 |
-
def update_database_info():
|
| 228 |
-
with open(CONFIG_PATH, encoding='utf8') as f:
|
| 229 |
-
config = pytoml.load(f)
|
| 230 |
-
workdir = config['feature_store']['work_dir']
|
| 231 |
-
chunkdirs = glob.glob(os.path.join(workdir, 'chunksize_*'))
|
| 232 |
-
chunkdirs.sort()
|
| 233 |
-
list_of_chunksize = [int(chunkdir.split('_')[-1]) for chunkdir in chunkdirs]
|
| 234 |
-
# print(list_of_chunksize)
|
| 235 |
-
jsonobj = {}
|
| 236 |
-
for chunkdir in chunkdirs:
|
| 237 |
-
k_dir = glob.glob(os.path.join(chunkdir, 'cluster_features','cluster_features_*'))
|
| 238 |
-
k_dir.sort()
|
| 239 |
-
list_of_k = [int(k.split('_')[-1]) for k in k_dir]
|
| 240 |
-
jsonobj[int(chunkdir.split('_')[-1])] = list_of_k
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
new_options = [f"chunksize:{chunksize}, k:{k}" for chunksize in list_of_chunksize for k in jsonobj[chunksize]]
|
| 244 |
-
|
| 245 |
-
return new_options, jsonobj
|
| 246 |
-
|
| 247 |
-
@spaces.GPU
|
| 248 |
-
def generate_database(chunksize:int,nclusters:str|list[str]):
|
| 249 |
-
# 在这里运行生成数据库的函数
|
| 250 |
-
repodir, workdir, _ = get_ready('repo_work')
|
| 251 |
-
if not os.path.exists(repodir):
|
| 252 |
-
return gr.Textbox(label="数据库已生成",value = '请先生成文献库',visible = True)
|
| 253 |
-
nclusters = [int(i) for i in nclusters]
|
| 254 |
-
# 文献库和数据库的覆盖删除逻辑待定
|
| 255 |
-
# 理论上 文献库只能生成一次 所以每次生成文献库都要删除之前的文献库和数据库
|
| 256 |
-
# 数据库可以根据文献库多次生成 暂不做删除 目前没有节省算力的逻辑 重复计算后覆盖 以后优化
|
| 257 |
-
# 不同的chunksize和nclusters会放在不同的文件夹下 不会互相覆盖
|
| 258 |
-
# if os.path.exists(workdir):
|
| 259 |
-
# shutil.rmtree(workdir)
|
| 260 |
-
|
| 261 |
-
cache = CacheRetriever(config_path=CONFIG_PATH)
|
| 262 |
-
fs_init = FeatureStore(embeddings=cache.embeddings,
|
| 263 |
-
reranker=cache.reranker,
|
| 264 |
-
chunk_size=chunksize,
|
| 265 |
-
n_clusters=nclusters,
|
| 266 |
-
config_path=CONFIG_PATH)
|
| 267 |
-
|
| 268 |
-
# walk all files in repo dir
|
| 269 |
-
file_opr = FileOperation()
|
| 270 |
-
files = file_opr.scan_dir(repo_dir=repodir)
|
| 271 |
-
fs_init.initialize(files=files, work_dir=workdir,file_opr=file_opr)
|
| 272 |
-
file_opr.summarize(files)
|
| 273 |
-
del fs_init
|
| 274 |
-
cache.pop('default')
|
| 275 |
-
texts, _ = update_database_info()
|
| 276 |
-
return gr.Textbox(label="数据库概况",value = '\n'.join(texts) ,visible = True)
|
| 277 |
-
|
| 278 |
-
def delete_database():
|
| 279 |
-
_, workdir, _ = get_ready('repo_work')
|
| 280 |
-
if os.path.exists(workdir):
|
| 281 |
-
shutil.rmtree(workdir)
|
| 282 |
-
return gr.Textbox(label="数据库概况",lines =3,value = '数据库已删除',visible = True)
|
| 283 |
-
|
| 284 |
-
def update_database_textbox():
|
| 285 |
-
texts, _ = update_database_info()
|
| 286 |
-
if texts == []:
|
| 287 |
-
return gr.Textbox(label="数据库概况",value = '目前还没有数据库',visible = True)
|
| 288 |
-
else:
|
| 289 |
-
return gr.Textbox(label="数据库概况",value = '\n'.join(texts),visible = True)
|
| 290 |
-
|
| 291 |
-
def update_chunksize_dropdown():
|
| 292 |
-
_, jsonobj = update_database_info()
|
| 293 |
-
return gr.Dropdown(choices= jsonobj.keys())
|
| 294 |
-
|
| 295 |
-
def update_ncluster_dropdown(chunksize:int):
|
| 296 |
-
_, jsonobj = update_database_info()
|
| 297 |
-
nclusters = jsonobj[chunksize]
|
| 298 |
-
return gr.Dropdown(choices= nclusters)
|
| 299 |
-
|
| 300 |
-
@spaces.GPU
|
| 301 |
-
def annotation(n,chunksize:int,nclusters:int,remote_ornot:bool):
|
| 302 |
-
'''
|
| 303 |
-
use llm to annotate cluster
|
| 304 |
-
n: percentage of clusters to annotate
|
| 305 |
-
'''
|
| 306 |
-
query = 'annotation'
|
| 307 |
-
if remote_ornot:
|
| 308 |
-
backend = 'remote'
|
| 309 |
-
else:
|
| 310 |
-
backend = 'local'
|
| 311 |
-
|
| 312 |
-
clusterdir, samples, assistant, theme = get_ready('annotation',chunksize,nclusters)
|
| 313 |
-
new_obj_list = []
|
| 314 |
-
n = round(n * len(samples.keys()))
|
| 315 |
-
for cluster_no in random.sample(samples.keys(), n):
|
| 316 |
-
chunk = '\n'.join(samples[cluster_no]['samples'][:10])
|
| 317 |
-
|
| 318 |
-
code, reply, cluster_no = assistant.annotate_cluster(
|
| 319 |
-
theme = theme,
|
| 320 |
-
cluster_no=cluster_no,
|
| 321 |
-
chunk=chunk,
|
| 322 |
-
history=[],
|
| 323 |
-
groupname='',
|
| 324 |
-
backend=backend)
|
| 325 |
-
references = f"cluster_no: {cluster_no}"
|
| 326 |
-
new_obj = {
|
| 327 |
-
'cluster_no': cluster_no,
|
| 328 |
-
'chunk': chunk,
|
| 329 |
-
'annotation': reply
|
| 330 |
-
}
|
| 331 |
-
new_obj_list.append(new_obj)
|
| 332 |
-
logger.info(f'{code}, {query}, {reply}, {references}')
|
| 333 |
-
|
| 334 |
-
with open(os.path.join(clusterdir, 'annotation.jsonl'), 'a') as f:
|
| 335 |
-
json.dump(new_obj, f, ensure_ascii=False)
|
| 336 |
-
f.write('\n')
|
| 337 |
-
|
| 338 |
-
return '\n\n'.join([obj['annotation'] for obj in new_obj_list])
|
| 339 |
-
|
| 340 |
-
@spaces.GPU
|
| 341 |
-
def inspiration(annotation:str,chunksize:int,nclusters:int,remote_ornot:bool):
|
| 342 |
-
query = 'inspiration'
|
| 343 |
-
if remote_ornot:
|
| 344 |
-
backend = 'remote'
|
| 345 |
-
else:
|
| 346 |
-
backend = 'local'
|
| 347 |
-
|
| 348 |
-
clusterdir, annoresult, assistant, theme = get_ready('inspiration',chunksize,nclusters)
|
| 349 |
-
new_obj_list = []
|
| 350 |
-
|
| 351 |
-
if annotation is not None: # if the user wants to get inspiration from specific clusters only
|
| 352 |
-
annoresult = [obj for obj in annoresult if obj['annotation'] in [txt.strip() for txt in annotation.split('\n')]]
|
| 353 |
-
|
| 354 |
-
for index in random.sample(range(len(annoresult)), min(5, len(annoresult))):
|
| 355 |
-
cluster_no = annoresult[index]['cluster_no']
|
| 356 |
-
chunks = annoresult[index]['annotation']
|
| 357 |
-
|
| 358 |
-
code, reply = assistant.getinspiration(
|
| 359 |
-
theme = theme,
|
| 360 |
-
annotations = chunks,
|
| 361 |
-
history=[],
|
| 362 |
-
groupname='',backend=backend)
|
| 363 |
-
new_obj = {
|
| 364 |
-
'inspiration': reply,
|
| 365 |
-
'cluster_no': cluster_no
|
| 366 |
-
}
|
| 367 |
-
new_obj_list.append(new_obj)
|
| 368 |
-
logger.info(f'{code}, {query}, {cluster_no},{reply}')
|
| 369 |
-
|
| 370 |
-
with open(os.path.join(clusterdir, 'inspiration.jsonl'), 'a') as f:
|
| 371 |
-
json.dump(new_obj, f, ensure_ascii=False)
|
| 372 |
-
with open(os.path.join(clusterdir, 'inspiration.txt'), 'a') as f:
|
| 373 |
-
f.write(f'{reply}\n')
|
| 374 |
-
|
| 375 |
-
return '\n\n'.join(list(set([obj['inspiration'] for obj in new_obj_list])))
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
def getpmcurls(references):
|
| 379 |
-
urls = []
|
| 380 |
-
for ref in references:
|
| 381 |
-
if ref.startswith('PMC'):
|
| 382 |
-
|
| 383 |
-
refid = ref.replace('.txt','')
|
| 384 |
-
urls.append(f'https://www.ncbi.nlm.nih.gov/pmc/articles/{refid}/')
|
| 385 |
-
else:
|
| 386 |
-
urls.append(ref)
|
| 387 |
-
return urls
|
| 388 |
-
|
| 389 |
-
@spaces.GPU
|
| 390 |
-
def summarize_text(query,chunksize:int,remote_ornot:bool):
|
| 391 |
-
if remote_ornot:
|
| 392 |
-
backend = 'remote'
|
| 393 |
-
else:
|
| 394 |
-
backend = 'local'
|
| 395 |
-
|
| 396 |
-
assistant,_ = get_ready('summarize',chunksize=chunksize,k=None)
|
| 397 |
-
code, reply, references = assistant.generate(query=query,
|
| 398 |
-
history=[],
|
| 399 |
-
groupname='',backend = backend)
|
| 400 |
-
|
| 401 |
-
logger.info(f'{code}, {query}, {reply}, {references}')
|
| 402 |
-
urls = getpmcurls(references)
|
| 403 |
-
mds = '\n'.join([f'[{ref}]({url})' for ref,url in zip(references,urls)])
|
| 404 |
-
return reply, gr.Markdown(label="参考文献",value = mds)
|
| 405 |
-
|
| 406 |
-
def main_interface():
|
| 407 |
-
with gr.Blocks() as demo:
|
| 408 |
-
with gr.Row():
|
| 409 |
-
gr.Markdown(
|
| 410 |
-
"""
|
| 411 |
-
# 医学文献综述助手 (又名 不想看文献)
|
| 412 |
-
"""
|
| 413 |
-
)
|
| 414 |
-
|
| 415 |
-
with gr.Tab("模型服务配置"):
|
| 416 |
-
gr.Markdown("""
|
| 417 |
-
#### 配置模型服务 🛠️
|
| 418 |
-
|
| 419 |
-
1. **是否使用远程大模型**
|
| 420 |
-
- 勾选此项,如果你想使用远程的大模型服务。
|
| 421 |
-
- 如果不勾选,将默认使用本地模型服务。
|
| 422 |
-
|
| 423 |
-
2. **API配置**
|
| 424 |
-
- 配置大模型提供商和API,确保模型服务能够正常运行。
|
| 425 |
-
- 提供商选择:kimi、deepseek、zhipuai、gpt。
|
| 426 |
-
- 输入您的API密钥和选择对应模型。
|
| 427 |
-
- 点击“保存配置”按钮以保存您的设置。
|
| 428 |
-
|
| 429 |
-
📝 **备注**:请参考[如何使用]('https://github.com/jabberwockyang/MedicalReviewAgent/blob/main/README.md')获取更多信息。
|
| 430 |
-
|
| 431 |
-
""")
|
| 432 |
-
|
| 433 |
-
remote_ornot = gr.Checkbox(label="是否使用远程大模型")
|
| 434 |
-
with gr.Accordion("API配置", open=True):
|
| 435 |
-
apimd = gr.Markdown("[如何配置API]('https://github.com/jabberwockyang/MedicalReviewAgent/blob/main/README.md')",visible=False)
|
| 436 |
-
remote_company = gr.Dropdown(["kimi", "deepseek", "zhipuai",'gpt'],
|
| 437 |
-
label="选择大模型提供商",interactive=False,visible=False)
|
| 438 |
-
api = gr.Textbox(label="您的API",lines = 1,interactive=False,visible=False)
|
| 439 |
-
model = gr.Dropdown([],label="选择模型",interactive=False,visible=False)
|
| 440 |
-
|
| 441 |
-
confirm_button = gr.Button("保存配置")
|
| 442 |
-
|
| 443 |
-
remote_ornot.change(update_remote_buttons, inputs=[remote_ornot],outputs=[apimd,remote_company,api,model])
|
| 444 |
-
remote_company.change(udate_model_dropdown, inputs=[remote_company],outputs=[model])
|
| 445 |
-
confirm_button.click(update_remote_config, inputs=[remote_ornot,remote_company,api,model],outputs=[confirm_button])
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
with gr.Tab("文献查找+数据库生成"):
|
| 449 |
-
gr.Markdown("""
|
| 450 |
-
#### 查找文献 📚
|
| 451 |
-
|
| 452 |
-
1. **输入关键词批量PubMed PMC文献**
|
| 453 |
-
- 在“感兴趣的关键词”框中输入您感兴趣的关键词,每行一个。
|
| 454 |
-
- 设置查找数量(0-1000)。
|
| 455 |
-
- 点击“搜索PubMed PMC”按钮进行文献查找。
|
| 456 |
-
|
| 457 |
-
2. **上传PDF**
|
| 458 |
-
- 通过“上传PDF”按钮上传您已有的PDF文献文件。
|
| 459 |
-
|
| 460 |
-
3. **更新文献库情况 删除文献库**
|
| 461 |
-
- 点击“更新文献库情况”按钮,查看当前文献库的概况。
|
| 462 |
-
- 如果需要重置或删除现有文献库,点击“删除文献库”按钮。
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
#### 生成数据库 🗂️
|
| 466 |
-
|
| 467 |
-
1. **设置数据库构建参数 生成数据库**
|
| 468 |
-
- 选择块大小(Chunk Size)和聚类数(Number of Clusters)。
|
| 469 |
-
- 提供选项用于选择合适的块大小和聚类数。
|
| 470 |
-
- 点击“生成数据库”按钮开始数据库生成过程。
|
| 471 |
-
|
| 472 |
-
2. **更新数据库情况 删除数据库**
|
| 473 |
-
- 点击“更新数据库情况”按钮,查看当前数据库的概况。
|
| 474 |
-
- 点击“删除数据库”按钮移除现有数据库。
|
| 475 |
-
|
| 476 |
-
📝 **备注**:请参考[如何选择数据库构建参数]('https://github.com/jabberwockyang/MedicalReviewAgent/tree/main')获取更多信息。
|
| 477 |
-
""")
|
| 478 |
-
with gr.Row(equal_height=True):
|
| 479 |
-
with gr.Column(scale=1):
|
| 480 |
-
input_keys = gr.Textbox(label="感兴趣的关键词",
|
| 481 |
-
lines = 5)
|
| 482 |
-
retmax = gr.Slider(
|
| 483 |
-
minimum=0,
|
| 484 |
-
maximum=1000,
|
| 485 |
-
value=500,
|
| 486 |
-
interactive=True,
|
| 487 |
-
label="查多少",
|
| 488 |
-
)
|
| 489 |
-
generate_repo_button = gr.Button("搜索PubMed PMC")
|
| 490 |
-
with gr.Column(scale=2):
|
| 491 |
-
file_output = gr.File(scale=2)
|
| 492 |
-
upload_button = gr.UploadButton("上传PDF",
|
| 493 |
-
file_types=[".pdf",".csv",".doc"],
|
| 494 |
-
file_count="multiple",scale=0)
|
| 495 |
-
|
| 496 |
-
with gr.Row(equal_height=True):
|
| 497 |
-
with gr.Column(scale=0):
|
| 498 |
-
delete_repo_button = gr.Button("删除文献库")
|
| 499 |
-
update_repo_button = gr.Button("更新文献库情况")
|
| 500 |
-
with gr.Column(scale=2):
|
| 501 |
-
|
| 502 |
-
repo_summary =gr.Textbox(label= '文献库概况', value="目前还没有文献库")
|
| 503 |
-
|
| 504 |
-
generate_repo_button.click(generate_articles_repo,
|
| 505 |
-
inputs=[input_keys,retmax],
|
| 506 |
-
outputs = [repo_summary])
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
delete_repo_button.click(delete_articles_repo, inputs=None,
|
| 510 |
-
outputs = repo_summary)
|
| 511 |
-
update_repo_button.click(update_repo, inputs=None,
|
| 512 |
-
outputs = repo_summary)
|
| 513 |
-
upload_button.upload(upload_file, upload_button, file_output)
|
| 514 |
-
|
| 515 |
-
with gr.Accordion("数据库构建参数", open=True):
|
| 516 |
-
gr.Markdown("[如何选择数据库构建参数]('https://github.com/jabberwockyang/MedicalReviewAgent/tree/main')")
|
| 517 |
-
chunksize = gr.Slider(label="Chunk Size",
|
| 518 |
-
info= 'How long you want the chunk to be?',
|
| 519 |
-
minimum=128, maximum=4096,value=1024,step=1,
|
| 520 |
-
interactive=True)
|
| 521 |
-
ncluster = gr.CheckboxGroup(["10", "20", "50", '100','200','500','1000'],
|
| 522 |
-
# default=["20", "50", '100'],
|
| 523 |
-
label="Number of Clusters",
|
| 524 |
-
info="How many Clusters you want to generate")
|
| 525 |
-
|
| 526 |
-
with gr.Row():
|
| 527 |
-
gene_database_button = gr.Button("生成数据库")
|
| 528 |
-
delete_database_button = gr.Button("删除数据库")
|
| 529 |
-
update_database_button = gr.Button("更新数据库情况")
|
| 530 |
-
|
| 531 |
-
database_summary = gr.Textbox(label="数据库概况",lines = 1,value="目前还没有数据库")
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
gene_database_button.click(generate_database, inputs=[chunksize,ncluster],
|
| 535 |
-
outputs = database_summary)
|
| 536 |
-
|
| 537 |
-
update_database_button.click(update_database_textbox,inputs=None,
|
| 538 |
-
outputs = [database_summary])
|
| 539 |
-
|
| 540 |
-
delete_database_button.click(delete_database, inputs=None,
|
| 541 |
-
outputs = database_summary)
|
| 542 |
-
with gr.Tab("写综述"):
|
| 543 |
-
gr.Markdown("""
|
| 544 |
-
#### 写综述 ✍️
|
| 545 |
-
|
| 546 |
-
1. **更新数据库情况**
|
| 547 |
-
- 点击“更新数据库情况”按钮,确保使用最新的数据库信息。
|
| 548 |
-
|
| 549 |
-
2. **选择块大小和聚类数**
|
| 550 |
-
- 从下拉菜单中选择合适的块大小和聚类数。
|
| 551 |
-
|
| 552 |
-
3. **抽样标注文章聚类**
|
| 553 |
-
- 设置抽样标注比例(0-1)。
|
| 554 |
-
- 点击“抽样标注文章聚类”按钮开始标注过程。
|
| 555 |
-
|
| 556 |
-
4. **获取灵感**
|
| 557 |
-
- 如果不知道写什么,点击“获取灵感”按钮。
|
| 558 |
-
- 系统将基于标注的文章聚类提供相应的综述子问题。
|
| 559 |
-
|
| 560 |
-
5. **写综述**
|
| 561 |
-
- 输入您想写的内容或主题。
|
| 562 |
-
- 点击“写综述”按钮,生成综述文本。
|
| 563 |
-
|
| 564 |
-
6. **查看生成结果**
|
| 565 |
-
- 生成的综述文本将显示在“看看”文本框中。
|
| 566 |
-
- 参考文献将显示在“参考文献”框中。
|
| 567 |
-
|
| 568 |
-
📝 **备注**:可以尝试不同的参数进行标注和灵感获取,有助于提高综述的质量和相关性。
|
| 569 |
-
""")
|
| 570 |
-
|
| 571 |
-
with gr.Accordion("聚类标注相关参数", open=True):
|
| 572 |
-
with gr.Row():
|
| 573 |
-
update_options = gr.Button("更新数据库情况", scale=0)
|
| 574 |
-
chunksize = gr.Dropdown([], label="选择块大小", scale=0)
|
| 575 |
-
nclusters = gr.Dropdown([], label="选择聚类数", scale=0)
|
| 576 |
-
ntoread = gr.Slider(
|
| 577 |
-
minimum=0,maximum=1,value=0.5,
|
| 578 |
-
interactive=True,
|
| 579 |
-
label="抽样标注比例",
|
| 580 |
-
)
|
| 581 |
-
|
| 582 |
-
annotation_button = gr.Button("抽样标注文章聚类")
|
| 583 |
-
annotation_output = gr.Textbox(label="文章聚类标注/片段摘要",
|
| 584 |
-
lines = 5,
|
| 585 |
-
interactive= True,
|
| 586 |
-
show_copy_button=True)
|
| 587 |
-
inspiration_button = gr.Button("获取灵感")
|
| 588 |
-
inspiration_output = gr.Textbox(label="灵光一现",
|
| 589 |
-
lines = 5,
|
| 590 |
-
show_copy_button=True)
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
query = gr.Textbox(label="想写什么")
|
| 594 |
-
|
| 595 |
-
write_button = gr.Button("写综述")
|
| 596 |
-
output_text = gr.Textbox(label="看看",lines=10)
|
| 597 |
-
output_references = gr.Markdown(label="参考文献")
|
| 598 |
-
|
| 599 |
-
update_options.click(update_chunksize_dropdown,
|
| 600 |
-
outputs=[chunksize])
|
| 601 |
-
|
| 602 |
-
chunksize.change(update_ncluster_dropdown,
|
| 603 |
-
inputs=[chunksize],
|
| 604 |
-
outputs= [nclusters])
|
| 605 |
-
|
| 606 |
-
annotation_button.click(annotation,
|
| 607 |
-
inputs = [ntoread, chunksize, nclusters,remote_ornot],
|
| 608 |
-
outputs=[annotation_output])
|
| 609 |
-
|
| 610 |
-
inspiration_button.click(inspiration,
|
| 611 |
-
inputs= [annotation_output, chunksize, nclusters,remote_ornot],
|
| 612 |
-
outputs=[inspiration_output])
|
| 613 |
-
|
| 614 |
-
write_button.click(summarize_text,
|
| 615 |
-
inputs=[query, chunksize,remote_ornot],
|
| 616 |
-
outputs =[output_text,output_references])
|
| 617 |
-
|
| 618 |
-
demo.launch(share=False, server_name='0.0.0.0', debug=True,show_error=True,allowed_paths=['img_0.jpg'])
|
| 619 |
-
|
| 620 |
-
# start service
|
| 621 |
-
if __name__ == '__main__':
|
| 622 |
-
args = parse_args()
|
| 623 |
-
# copy config from config-bak
|
| 624 |
-
shutil.copy('config-bak.ini', args.config_path) # yyj
|
| 625 |
-
CONFIG_PATH = args.config_path
|
| 626 |
-
|
| 627 |
-
if args.standalone is True:
|
| 628 |
-
# hybrid llm serve
|
| 629 |
-
server_ready = Value('i', 0)
|
| 630 |
-
server_process = Process(target=llm_serve,
|
| 631 |
-
args=(args.config_path, server_ready))
|
| 632 |
-
server_process.start()
|
| 633 |
-
while True:
|
| 634 |
-
if server_ready.value == 0:
|
| 635 |
-
logger.info('waiting for server to be ready..')
|
| 636 |
-
time.sleep(3)
|
| 637 |
-
elif server_ready.value == 1:
|
| 638 |
-
break
|
| 639 |
-
else:
|
| 640 |
-
logger.error('start local LLM server failed, quit.')
|
| 641 |
-
raise Exception('local LLM path')
|
| 642 |
-
logger.info('Hybrid LLM Server start.')
|
| 643 |
-
|
| 644 |
-
main_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/config-bak-checkpoint.ini
DELETED
|
@@ -1,63 +0,0 @@
|
|
| 1 |
-
[feature_store]
|
| 2 |
-
reject_throttle = 0
|
| 3 |
-
embedding_model_path = "maidalun1020/bce-embedding-base_v1"
|
| 4 |
-
reranker_model_path = "maidalun1020/bce-reranker-base_v1"
|
| 5 |
-
repo_dir = "repodir"
|
| 6 |
-
work_dir = "workdir"
|
| 7 |
-
n_clusters = [20, 50]
|
| 8 |
-
chunk_size = 1024
|
| 9 |
-
|
| 10 |
-
[web_search]
|
| 11 |
-
x_api_key = "${YOUR-API-KEY}"
|
| 12 |
-
domain_partial_order = ["openai.com", "pytorch.org", "readthedocs.io", "nvidia.com", "stackoverflow.com", "juejin.cn", "zhuanlan.zhihu.com", "www.cnblogs.com"]
|
| 13 |
-
save_dir = "logs/web_search_result"
|
| 14 |
-
|
| 15 |
-
[llm]
|
| 16 |
-
enable_local = 1
|
| 17 |
-
enable_remote = 1
|
| 18 |
-
client_url = "http://127.0.0.1:8888/inference"
|
| 19 |
-
|
| 20 |
-
[llm.server]
|
| 21 |
-
local_llm_path = "Qwen/Qwen1.5-7B-Chat"
|
| 22 |
-
local_llm_max_text_length = 32000
|
| 23 |
-
local_llm_bind_port = 8888
|
| 24 |
-
remote_type = ""
|
| 25 |
-
remote_api_key = ""
|
| 26 |
-
remote_llm_max_text_length = 32000
|
| 27 |
-
remote_llm_model = ""
|
| 28 |
-
rpm = 500
|
| 29 |
-
|
| 30 |
-
[worker]
|
| 31 |
-
enable_sg_search = 0
|
| 32 |
-
save_path = "logs/work.txt"
|
| 33 |
-
|
| 34 |
-
[worker.time]
|
| 35 |
-
start = "00:00:00"
|
| 36 |
-
end = "23:59:59"
|
| 37 |
-
has_weekday = 1
|
| 38 |
-
|
| 39 |
-
[sg_search]
|
| 40 |
-
binary_src_path = "/usr/local/bin/src"
|
| 41 |
-
src_access_token = "${YOUR-SRC-ACCESS-TOKEN}"
|
| 42 |
-
|
| 43 |
-
[sg_search.opencompass]
|
| 44 |
-
github_repo_id = "open-compass/opencompass"
|
| 45 |
-
introduction = "用于评测大型语言模型(LLM). 它提供了完整的开源可复现的评测框架,支持大语言模型、多模态模型的一站式评测,基于分布式技术,对大参数量模型亦能实现高效评测。评测方向汇总为知识、语言、理解、推理、考试五大能力维度,整合集纳了超过70个评测数据集,合计提供了超过40万个模型评测问题,并提供长文本、安全、代码3类大模型特色技术能力评测。"
|
| 46 |
-
|
| 47 |
-
[sg_search.lmdeploy]
|
| 48 |
-
github_repo_id = "internlm/lmdeploy"
|
| 49 |
-
introduction = "lmdeploy 是一个用于压缩、部署和服务 LLM(Large Language Model)的工具包。是一个服务端场景下,transformer 结构 LLM 部署工具,支持 GPU 服务端部署,速度有保障,支持 Tensor Parallel,多并发优化,功能全面,包括模型转换、缓存历史会话的 cache feature 等. 它还提供了 WebUI、命令行和 gRPC 客户端接入。"
|
| 50 |
-
|
| 51 |
-
[frontend]
|
| 52 |
-
type = "none"
|
| 53 |
-
webhook_url = "https://open.feishu.cn/open-apis/bot/v2/hook/xxxxxxxxxxxxxxx"
|
| 54 |
-
message_process_policy = "immediate"
|
| 55 |
-
|
| 56 |
-
[frontend.lark_group]
|
| 57 |
-
app_id = "cli_a53a34dcb778500e"
|
| 58 |
-
app_secret = "2ajhg1ixSvlNm1bJkH4tJhPfTCsGGHT1"
|
| 59 |
-
encrypt_key = "abc"
|
| 60 |
-
verification_token = "def"
|
| 61 |
-
|
| 62 |
-
[frontend.wechat_personal]
|
| 63 |
-
bind_port = 9527
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.ipynb_checkpoints/packages-checkpoint.txt
DELETED
|
@@ -1,8 +0,0 @@
|
|
| 1 |
-
apt-get install libgl1-mesa-glx
|
| 2 |
-
cd /root && mkdir models
|
| 3 |
-
cd /root/models
|
| 4 |
-
|
| 5 |
-
# login required
|
| 6 |
-
huggingface-cli download Qwen/Qwen1.5-7B-Chat --local-dir /root/models/Qwen1.5-7B-Chat
|
| 7 |
-
huggingface-cli download maidalun1020/bce-embedding-base_v1 --local-dir /root/models/bce-embedding-base_v1
|
| 8 |
-
huggingface-cli download maidalun1020/bce-reranker-base_v1 --local-dir /root/models/bce-reranker-base_v1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|