|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
import librosa |
|
import soundfile as sf |
|
from transformers import pipeline, VitsModel, AutoTokenizer |
|
from datasets import load_dataset |
|
|
|
|
|
|
|
|
|
asr = pipeline( |
|
"automatic-speech-recognition", |
|
model="facebook/wav2vec2-base-960h" |
|
) |
|
|
|
|
|
|
|
|
|
translation_models = { |
|
"Spanish": "Helsinki-NLP/opus-mt-en-es", |
|
"Chinese": "Helsinki-NLP/opus-mt-en-zh", |
|
"Japanese": "Helsinki-NLP/opus-mt-en-ja" |
|
} |
|
|
|
translation_tasks = { |
|
"Spanish": "translation_en_to_es", |
|
"Chinese": "translation_en_to_zh", |
|
"Japanese": "translation_en_to_ja" |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SPANISH_KEY = "Spanish" |
|
CHINESE_KEY = "Chinese" |
|
JAPANESE_KEY = "Japanese" |
|
|
|
|
|
mms_spanish_config = { |
|
"model_id": "facebook/mms-tts-spa", |
|
"architecture": "vits" |
|
} |
|
|
|
|
|
|
|
|
|
translator_cache = {} |
|
vits_model_cache = None |
|
speech_t5_pipeline_cache = None |
|
speech_t5_speaker_embedding = None |
|
|
|
def get_translator(lang): |
|
""" |
|
Return a cached MarianMT translator for the specified language. |
|
""" |
|
if lang in translator_cache: |
|
return translator_cache[lang] |
|
model_name = translation_models[lang] |
|
task_name = translation_tasks[lang] |
|
translator = pipeline(task_name, model=model_name) |
|
translator_cache[lang] = translator |
|
return translator |
|
|
|
def load_spanish_vits(): |
|
""" |
|
Load and cache the Spanish VITS model + tokenizer (facebook/mms-tts-spa). |
|
""" |
|
global vits_model_cache |
|
if vits_model_cache is not None: |
|
return vits_model_cache |
|
|
|
try: |
|
model_id = mms_spanish_config["model_id"] |
|
model = VitsModel.from_pretrained(model_id) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
vits_model_cache = (model, tokenizer) |
|
except Exception as e: |
|
raise RuntimeError(f"Failed to load Spanish TTS model {mms_spanish_config['model_id']}: {e}") |
|
|
|
return vits_model_cache |
|
|
|
def load_speech_t5_pipeline(): |
|
""" |
|
Load and cache the Microsoft SpeechT5 text-to-speech pipeline |
|
and a default speaker embedding. |
|
""" |
|
global speech_t5_pipeline_cache, speech_t5_speaker_embedding |
|
if speech_t5_pipeline_cache is not None and speech_t5_speaker_embedding is not None: |
|
return speech_t5_pipeline_cache, speech_t5_speaker_embedding |
|
|
|
try: |
|
|
|
|
|
t5_pipe = pipeline("text-to-speech", model="microsoft/speecht5_tts") |
|
except Exception as e: |
|
raise RuntimeError(f"Failed to load Microsoft SpeechT5 pipeline: {e}") |
|
|
|
|
|
try: |
|
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") |
|
|
|
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) |
|
except Exception as e: |
|
raise RuntimeError(f"Failed to load default speaker embedding: {e}") |
|
|
|
speech_t5_pipeline_cache = t5_pipe |
|
speech_t5_speaker_embedding = speaker_embedding |
|
return t5_pipe, speaker_embedding |
|
|
|
|
|
|
|
|
|
def run_vits_inference(text): |
|
""" |
|
For Spanish TTS using MMS (facebook/mms-tts-spa). |
|
""" |
|
model, tokenizer = load_spanish_vits() |
|
inputs = tokenizer(text, return_tensors="pt") |
|
with torch.no_grad(): |
|
output = model(**inputs) |
|
if not hasattr(output, "waveform"): |
|
raise RuntimeError("VITS output does not contain 'waveform'.") |
|
waveform = output.waveform.squeeze().cpu().numpy() |
|
sample_rate = 16000 |
|
return sample_rate, waveform |
|
|
|
def run_speecht5_inference(text): |
|
""" |
|
For Chinese & Japanese TTS using Microsoft SpeechT5 pipeline. |
|
""" |
|
t5_pipe, speaker_embedding = load_speech_t5_pipeline() |
|
|
|
result = t5_pipe( |
|
text, |
|
forward_params={"speaker_embeddings": speaker_embedding} |
|
) |
|
waveform = result["audio"] |
|
sample_rate = result["sampling_rate"] |
|
return sample_rate, waveform |
|
|
|
|
|
|
|
|
|
def predict(audio, text, target_language): |
|
""" |
|
1. Get English text (ASR if audio provided, else text). |
|
2. Translate to target_language. |
|
3. TTS with the chosen approach (VITS for Spanish, SpeechT5 for Chinese/Japanese). |
|
""" |
|
|
|
if text.strip(): |
|
english_text = text.strip() |
|
elif audio is not None: |
|
sample_rate, audio_data = audio |
|
|
|
|
|
if audio_data.dtype not in [np.float32, np.float64]: |
|
audio_data = audio_data.astype(np.float32) |
|
|
|
|
|
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1: |
|
audio_data = np.mean(audio_data, axis=1) |
|
|
|
|
|
if sample_rate != 16000: |
|
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000) |
|
|
|
asr_input = {"array": audio_data, "sampling_rate": 16000} |
|
asr_result = asr(asr_input) |
|
english_text = asr_result["text"] |
|
else: |
|
return "No input provided.", "", None |
|
|
|
|
|
translator = get_translator(target_language) |
|
try: |
|
translation_result = translator(english_text) |
|
translated_text = translation_result[0]["translation_text"] |
|
except Exception as e: |
|
return english_text, f"Translation error: {e}", None |
|
|
|
|
|
try: |
|
if target_language == SPANISH_KEY: |
|
sr, waveform = run_vits_inference(translated_text) |
|
else: |
|
|
|
sr, waveform = run_speecht5_inference(translated_text) |
|
except Exception as e: |
|
return english_text, translated_text, f"TTS error: {e}" |
|
|
|
return english_text, translated_text, (sr, waveform) |
|
|
|
|
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"), |
|
gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"), |
|
gr.Dropdown(choices=["Spanish", "Chinese", "Japanese"], value="Spanish", label="Target Language") |
|
], |
|
outputs=[ |
|
gr.Textbox(label="English Transcription"), |
|
gr.Textbox(label="Translation (Target Language)"), |
|
gr.Audio(label="Synthesized Speech") |
|
], |
|
title="Multimodal Language Learning Aid", |
|
description=( |
|
"1. Transcribes English speech using Wav2Vec2-960h (or takes English text).\n" |
|
"2. Translates to Spanish, Chinese, or Japanese.\n" |
|
"3. Provides synthetic speech:\n" |
|
" - Spanish -> facebook/mms-tts-spa (VITS)\n" |
|
" - Chinese & Japanese -> microsoft/speecht5_tts (SpeechT5)\n\n" |
|
), |
|
allow_flagging="never" |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch(server_name="0.0.0.0", server_port=7860) |