Update app.py
Browse files
app.py
CHANGED
@@ -29,24 +29,21 @@ translation_tasks = {
|
|
29 |
}
|
30 |
|
31 |
# -----------------------------------------------
|
32 |
-
# 3. TTS Model Configurations
|
33 |
-
# We'll load them manually (not with pipeline("text-to-speech"))
|
34 |
# -----------------------------------------------
|
35 |
-
#
|
36 |
-
# - Chinese (MMS TTS, uses VITS architecture)
|
37 |
-
# - Japanese (SpeechT5 or a VITS-based model—here we pick a SpeechT5 example)
|
38 |
tts_config = {
|
39 |
"Spanish": {
|
40 |
"model_id": "facebook/mms-tts-spa",
|
41 |
-
"architecture": "vits"
|
42 |
},
|
43 |
"Chinese": {
|
44 |
"model_id": "facebook/mms-tts-che",
|
45 |
"architecture": "vits"
|
46 |
},
|
47 |
"Japanese": {
|
48 |
-
"model_id": "
|
49 |
-
"architecture": "
|
50 |
}
|
51 |
}
|
52 |
|
@@ -69,7 +66,7 @@ def get_translator(lang):
|
|
69 |
return translator
|
70 |
|
71 |
# -----------------------------------------------
|
72 |
-
# 6. TTS Helper
|
73 |
# -----------------------------------------------
|
74 |
def get_tts_model(lang):
|
75 |
"""
|
@@ -86,25 +83,18 @@ def get_tts_model(lang):
|
|
86 |
arch = config["architecture"]
|
87 |
|
88 |
try:
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
93 |
-
elif arch == "speecht5":
|
94 |
-
# For a SpeechT5 model, we might do something else
|
95 |
-
# e.g., pipeline("text-to-speech", model=...) if it works
|
96 |
-
# or custom loading if it's also a VITS-based approach
|
97 |
-
# We'll attempt a similar pattern:
|
98 |
-
model = VitsModel.from_pretrained(model_id)
|
99 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
100 |
-
else:
|
101 |
-
raise ValueError(f"Unknown TTS architecture: {arch}")
|
102 |
except Exception as e:
|
103 |
raise RuntimeError(f"Failed to load TTS model {model_id}: {e}")
|
104 |
|
105 |
tts_model_cache[lang] = (model, tokenizer, arch)
|
106 |
return tts_model_cache[lang]
|
107 |
|
|
|
|
|
|
|
108 |
def run_tts_inference(lang, text):
|
109 |
"""
|
110 |
Generates waveform using the loaded TTS model and tokenizer.
|
@@ -120,25 +110,23 @@ def run_tts_inference(lang, text):
|
|
120 |
if hasattr(output, "waveform"):
|
121 |
waveform_tensor = output.waveform
|
122 |
else:
|
123 |
-
|
124 |
-
raise RuntimeError("The TTS model output doesn't have 'waveform' attribute.")
|
125 |
|
126 |
-
# Convert to numpy
|
127 |
waveform = waveform_tensor.squeeze().cpu().numpy()
|
128 |
|
129 |
-
#
|
130 |
sample_rate = 16000
|
131 |
return (sample_rate, waveform)
|
132 |
|
133 |
# -----------------------------------------------
|
134 |
-
#
|
135 |
# -----------------------------------------------
|
136 |
def predict(audio, text, target_language):
|
137 |
"""
|
138 |
-
1.
|
139 |
-
Else, if audio is provided, run ASR.
|
140 |
2. Translate English -> target_language.
|
141 |
-
3. Run TTS
|
142 |
"""
|
143 |
# Step 1: English text
|
144 |
if text.strip():
|
@@ -150,7 +138,7 @@ def predict(audio, text, target_language):
|
|
150 |
if audio_data.dtype not in [np.float32, np.float64]:
|
151 |
audio_data = audio_data.astype(np.float32)
|
152 |
|
153 |
-
#
|
154 |
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
|
155 |
audio_data = np.mean(audio_data, axis=1)
|
156 |
|
@@ -181,7 +169,7 @@ def predict(audio, text, target_language):
|
|
181 |
return english_text, translated_text, (sample_rate, waveform)
|
182 |
|
183 |
# -----------------------------------------------
|
184 |
-
#
|
185 |
# -----------------------------------------------
|
186 |
iface = gr.Interface(
|
187 |
fn=predict,
|
@@ -195,14 +183,14 @@ iface = gr.Interface(
|
|
195 |
gr.Textbox(label="Translation (Target Language)"),
|
196 |
gr.Audio(label="Synthesized Speech in Target Language")
|
197 |
],
|
198 |
-
title="Multimodal Language Learning Aid (
|
199 |
description=(
|
200 |
"This app:\n"
|
201 |
"1. Transcribes English speech (via ASR) or accepts English text.\n"
|
202 |
-
"2. Translates to Spanish, Chinese, or Japanese.\n"
|
203 |
-
"3. Synthesizes speech with VITS-based
|
204 |
-
"Note:
|
205 |
-
"
|
206 |
),
|
207 |
allow_flagging="never"
|
208 |
)
|
|
|
29 |
}
|
30 |
|
31 |
# -----------------------------------------------
|
32 |
+
# 3. TTS Model Configurations (All VITS)
|
|
|
33 |
# -----------------------------------------------
|
34 |
+
# Make sure these model IDs exist on Hugging Face.
|
|
|
|
|
35 |
tts_config = {
|
36 |
"Spanish": {
|
37 |
"model_id": "facebook/mms-tts-spa",
|
38 |
+
"architecture": "vits"
|
39 |
},
|
40 |
"Chinese": {
|
41 |
"model_id": "facebook/mms-tts-che",
|
42 |
"architecture": "vits"
|
43 |
},
|
44 |
"Japanese": {
|
45 |
+
"model_id": "facebook/mms-tts-jpn",
|
46 |
+
"architecture": "vits"
|
47 |
}
|
48 |
}
|
49 |
|
|
|
66 |
return translator
|
67 |
|
68 |
# -----------------------------------------------
|
69 |
+
# 6. TTS Loading Helper
|
70 |
# -----------------------------------------------
|
71 |
def get_tts_model(lang):
|
72 |
"""
|
|
|
83 |
arch = config["architecture"]
|
84 |
|
85 |
try:
|
86 |
+
# Since arch == "vits" for all three languages, we load VitsModel + AutoTokenizer
|
87 |
+
model = VitsModel.from_pretrained(model_id)
|
88 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
except Exception as e:
|
90 |
raise RuntimeError(f"Failed to load TTS model {model_id}: {e}")
|
91 |
|
92 |
tts_model_cache[lang] = (model, tokenizer, arch)
|
93 |
return tts_model_cache[lang]
|
94 |
|
95 |
+
# -----------------------------------------------
|
96 |
+
# 7. TTS Inference Helper
|
97 |
+
# -----------------------------------------------
|
98 |
def run_tts_inference(lang, text):
|
99 |
"""
|
100 |
Generates waveform using the loaded TTS model and tokenizer.
|
|
|
110 |
if hasattr(output, "waveform"):
|
111 |
waveform_tensor = output.waveform
|
112 |
else:
|
113 |
+
raise RuntimeError("TTS model output does not contain 'waveform'.")
|
|
|
114 |
|
115 |
+
# Convert to numpy
|
116 |
waveform = waveform_tensor.squeeze().cpu().numpy()
|
117 |
|
118 |
+
# MMS TTS typically uses 16 kHz
|
119 |
sample_rate = 16000
|
120 |
return (sample_rate, waveform)
|
121 |
|
122 |
# -----------------------------------------------
|
123 |
+
# 8. Prediction Function
|
124 |
# -----------------------------------------------
|
125 |
def predict(audio, text, target_language):
|
126 |
"""
|
127 |
+
1. Obtain English text (from text input or ASR).
|
|
|
128 |
2. Translate English -> target_language.
|
129 |
+
3. Run VITS-based TTS for that language.
|
130 |
"""
|
131 |
# Step 1: English text
|
132 |
if text.strip():
|
|
|
138 |
if audio_data.dtype not in [np.float32, np.float64]:
|
139 |
audio_data = audio_data.astype(np.float32)
|
140 |
|
141 |
+
# Convert stereo to mono if needed
|
142 |
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
|
143 |
audio_data = np.mean(audio_data, axis=1)
|
144 |
|
|
|
169 |
return english_text, translated_text, (sample_rate, waveform)
|
170 |
|
171 |
# -----------------------------------------------
|
172 |
+
# 9. Gradio Interface
|
173 |
# -----------------------------------------------
|
174 |
iface = gr.Interface(
|
175 |
fn=predict,
|
|
|
183 |
gr.Textbox(label="Translation (Target Language)"),
|
184 |
gr.Audio(label="Synthesized Speech in Target Language")
|
185 |
],
|
186 |
+
title="Multimodal Language Learning Aid (MMS TTS / VITS)",
|
187 |
description=(
|
188 |
"This app:\n"
|
189 |
"1. Transcribes English speech (via ASR) or accepts English text.\n"
|
190 |
+
"2. Translates to Spanish, Chinese, or Japanese (Helsinki-NLP).\n"
|
191 |
+
"3. Synthesizes speech with VITS-based MMS TTS models.\n\n"
|
192 |
+
"Note: Ensure the MMS model IDs exist on Hugging Face. If not, you'll see an error.\n"
|
193 |
+
"Record/upload English audio or enter text, then select a target language."
|
194 |
),
|
195 |
allow_flagging="never"
|
196 |
)
|