Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
import librosa
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
|
| 7 |
+
# --------------------------------------------------
|
| 8 |
+
# ASR Pipeline (for English transcription)
|
| 9 |
+
# --------------------------------------------------
|
| 10 |
+
asr = pipeline(
|
| 11 |
+
"automatic-speech-recognition",
|
| 12 |
+
model="facebook/wav2vec2-large-960h-lv60-self"
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
# --------------------------------------------------
|
| 16 |
+
# Mapping for Target Languages and Models
|
| 17 |
+
# --------------------------------------------------
|
| 18 |
+
translation_models = {
|
| 19 |
+
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
| 20 |
+
"French": "Helsinki-NLP/opus-mt-en-fr",
|
| 21 |
+
"German": "Helsinki-NLP/opus-mt-en-de",
|
| 22 |
+
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
|
| 23 |
+
"Russian": "Helsinki-NLP/opus-mt-en-ru",
|
| 24 |
+
"Arabic": "Helsinki-NLP/opus-mt-en-ar",
|
| 25 |
+
"Portuguese": "Helsinki-NLP/opus-mt-en-pt",
|
| 26 |
+
"Japanese": "Helsinki-NLP/opus-mt-en-ja",
|
| 27 |
+
"Italian": "Helsinki-NLP/opus-mt-en-it",
|
| 28 |
+
"Korean": "Helsinki-NLP/opus-mt-en-ko"
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
tts_models = {
|
| 32 |
+
"Spanish": "tts_models/es/tacotron2-DDC",
|
| 33 |
+
"French": "tts_models/fr/tacotron2",
|
| 34 |
+
"German": "tts_models/de/tacotron2",
|
| 35 |
+
"Chinese": "tts_models/zh/tacotron2",
|
| 36 |
+
"Russian": "tts_models/ru/tacotron2",
|
| 37 |
+
"Arabic": "tts_models/ar/tacotron2",
|
| 38 |
+
"Portuguese": "tts_models/pt/tacotron2",
|
| 39 |
+
"Japanese": "tts_models/ja/tacotron2",
|
| 40 |
+
"Italian": "tts_models/it/tacotron2",
|
| 41 |
+
"Korean": "tts_models/ko/tacotron2"
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
# Caches for translator and TTS pipelines
|
| 45 |
+
translator_cache = {}
|
| 46 |
+
tts_cache = {}
|
| 47 |
+
|
| 48 |
+
def get_translator(target_language):
|
| 49 |
+
if target_language in translator_cache:
|
| 50 |
+
return translator_cache[target_language]
|
| 51 |
+
model_name = translation_models[target_language]
|
| 52 |
+
# Pipeline task naming is case sensitive; here we assume task "translation_en_to_<lang>"
|
| 53 |
+
translator = pipeline("translation_en_to_" + target_language.lower(), model=model_name)
|
| 54 |
+
translator_cache[target_language] = translator
|
| 55 |
+
return translator
|
| 56 |
+
|
| 57 |
+
def get_tts(target_language):
|
| 58 |
+
if target_language in tts_cache:
|
| 59 |
+
return tts_cache[target_language]
|
| 60 |
+
model_name = tts_models[target_language]
|
| 61 |
+
tts = pipeline("text-to-speech", model=model_name)
|
| 62 |
+
tts_cache[target_language] = tts
|
| 63 |
+
return tts
|
| 64 |
+
|
| 65 |
+
# --------------------------------------------------
|
| 66 |
+
# Prediction Function
|
| 67 |
+
# --------------------------------------------------
|
| 68 |
+
def predict(audio, text, target_language):
|
| 69 |
+
# Use text input if provided; otherwise, use ASR on audio
|
| 70 |
+
if text.strip() != "":
|
| 71 |
+
english_text = text.strip()
|
| 72 |
+
elif audio is not None:
|
| 73 |
+
sample_rate, audio_data = audio
|
| 74 |
+
|
| 75 |
+
# Ensure the audio is floating-point for librosa
|
| 76 |
+
if audio_data.dtype not in [np.float32, np.float64]:
|
| 77 |
+
audio_data = audio_data.astype(np.float32)
|
| 78 |
+
|
| 79 |
+
# Convert stereo to mono if needed
|
| 80 |
+
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
|
| 81 |
+
audio_data = np.mean(audio_data, axis=1)
|
| 82 |
+
|
| 83 |
+
# Resample to 16 kHz if necessary
|
| 84 |
+
if sample_rate != 16000:
|
| 85 |
+
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
|
| 86 |
+
|
| 87 |
+
input_audio = {"array": audio_data, "sampling_rate": 16000}
|
| 88 |
+
asr_result = asr(input_audio)
|
| 89 |
+
english_text = asr_result["text"]
|
| 90 |
+
else:
|
| 91 |
+
return "No input provided.", "", None
|
| 92 |
+
|
| 93 |
+
# Translation step
|
| 94 |
+
translator = get_translator(target_language)
|
| 95 |
+
translation_result = translator(english_text)
|
| 96 |
+
translated_text = translation_result[0]["translation_text"]
|
| 97 |
+
|
| 98 |
+
# TTS step: synthesize speech from the translated text
|
| 99 |
+
tts = get_tts(target_language)
|
| 100 |
+
tts_result = tts(translated_text)
|
| 101 |
+
# The TTS pipeline returns a dict with "wav" and "sample_rate"
|
| 102 |
+
synthesized_audio = (tts_result["sample_rate"], tts_result["wav"])
|
| 103 |
+
|
| 104 |
+
return english_text, translated_text, synthesized_audio
|
| 105 |
+
|
| 106 |
+
# --------------------------------------------------
|
| 107 |
+
# Gradio Interface Setup
|
| 108 |
+
# --------------------------------------------------
|
| 109 |
+
iface = gr.Interface(
|
| 110 |
+
fn=predict,
|
| 111 |
+
inputs=[
|
| 112 |
+
gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
|
| 113 |
+
gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
|
| 114 |
+
gr.Dropdown(choices=list(translation_models.keys()), value="Spanish", label="Target Language")
|
| 115 |
+
],
|
| 116 |
+
outputs=[
|
| 117 |
+
gr.Textbox(label="English Transcription"),
|
| 118 |
+
gr.Textbox(label="Translation (Target Language)"),
|
| 119 |
+
gr.Audio(label="Synthesized Speech in Target Language")
|
| 120 |
+
],
|
| 121 |
+
title="Multimodal Language Learning Aid",
|
| 122 |
+
description=(
|
| 123 |
+
"This app helps language learners by providing three outputs:\n"
|
| 124 |
+
"1. English transcription (from ASR or text input),\n"
|
| 125 |
+
"2. Translation to a target language, and\n"
|
| 126 |
+
"3. Synthetic speech in the target language.\n\n"
|
| 127 |
+
"Choose one of the top 10 commonly used languages from the dropdown.\n"
|
| 128 |
+
"You can either record/upload an English audio sample or enter English text directly."
|
| 129 |
+
),
|
| 130 |
+
allow_flagging="never"
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
if __name__ == "__main__":
|
| 134 |
+
iface.launch()
|