Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import librosa
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
# --------------------------------------------------
|
8 |
+
# ASR Pipeline (for English transcription)
|
9 |
+
# --------------------------------------------------
|
10 |
+
asr = pipeline(
|
11 |
+
"automatic-speech-recognition",
|
12 |
+
model="facebook/wav2vec2-large-960h-lv60-self"
|
13 |
+
)
|
14 |
+
|
15 |
+
# --------------------------------------------------
|
16 |
+
# Mapping for Target Languages and Models
|
17 |
+
# --------------------------------------------------
|
18 |
+
translation_models = {
|
19 |
+
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
20 |
+
"French": "Helsinki-NLP/opus-mt-en-fr",
|
21 |
+
"German": "Helsinki-NLP/opus-mt-en-de",
|
22 |
+
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
|
23 |
+
"Russian": "Helsinki-NLP/opus-mt-en-ru",
|
24 |
+
"Arabic": "Helsinki-NLP/opus-mt-en-ar",
|
25 |
+
"Portuguese": "Helsinki-NLP/opus-mt-en-pt",
|
26 |
+
"Japanese": "Helsinki-NLP/opus-mt-en-ja",
|
27 |
+
"Italian": "Helsinki-NLP/opus-mt-en-it",
|
28 |
+
"Korean": "Helsinki-NLP/opus-mt-en-ko"
|
29 |
+
}
|
30 |
+
|
31 |
+
tts_models = {
|
32 |
+
"Spanish": "tts_models/es/tacotron2-DDC",
|
33 |
+
"French": "tts_models/fr/tacotron2",
|
34 |
+
"German": "tts_models/de/tacotron2",
|
35 |
+
"Chinese": "tts_models/zh/tacotron2",
|
36 |
+
"Russian": "tts_models/ru/tacotron2",
|
37 |
+
"Arabic": "tts_models/ar/tacotron2",
|
38 |
+
"Portuguese": "tts_models/pt/tacotron2",
|
39 |
+
"Japanese": "tts_models/ja/tacotron2",
|
40 |
+
"Italian": "tts_models/it/tacotron2",
|
41 |
+
"Korean": "tts_models/ko/tacotron2"
|
42 |
+
}
|
43 |
+
|
44 |
+
# Caches for translator and TTS pipelines
|
45 |
+
translator_cache = {}
|
46 |
+
tts_cache = {}
|
47 |
+
|
48 |
+
def get_translator(target_language):
|
49 |
+
if target_language in translator_cache:
|
50 |
+
return translator_cache[target_language]
|
51 |
+
model_name = translation_models[target_language]
|
52 |
+
# Pipeline task naming is case sensitive; here we assume task "translation_en_to_<lang>"
|
53 |
+
translator = pipeline("translation_en_to_" + target_language.lower(), model=model_name)
|
54 |
+
translator_cache[target_language] = translator
|
55 |
+
return translator
|
56 |
+
|
57 |
+
def get_tts(target_language):
|
58 |
+
if target_language in tts_cache:
|
59 |
+
return tts_cache[target_language]
|
60 |
+
model_name = tts_models[target_language]
|
61 |
+
tts = pipeline("text-to-speech", model=model_name)
|
62 |
+
tts_cache[target_language] = tts
|
63 |
+
return tts
|
64 |
+
|
65 |
+
# --------------------------------------------------
|
66 |
+
# Prediction Function
|
67 |
+
# --------------------------------------------------
|
68 |
+
def predict(audio, text, target_language):
|
69 |
+
# Use text input if provided; otherwise, use ASR on audio
|
70 |
+
if text.strip() != "":
|
71 |
+
english_text = text.strip()
|
72 |
+
elif audio is not None:
|
73 |
+
sample_rate, audio_data = audio
|
74 |
+
|
75 |
+
# Ensure the audio is floating-point for librosa
|
76 |
+
if audio_data.dtype not in [np.float32, np.float64]:
|
77 |
+
audio_data = audio_data.astype(np.float32)
|
78 |
+
|
79 |
+
# Convert stereo to mono if needed
|
80 |
+
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
|
81 |
+
audio_data = np.mean(audio_data, axis=1)
|
82 |
+
|
83 |
+
# Resample to 16 kHz if necessary
|
84 |
+
if sample_rate != 16000:
|
85 |
+
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
|
86 |
+
|
87 |
+
input_audio = {"array": audio_data, "sampling_rate": 16000}
|
88 |
+
asr_result = asr(input_audio)
|
89 |
+
english_text = asr_result["text"]
|
90 |
+
else:
|
91 |
+
return "No input provided.", "", None
|
92 |
+
|
93 |
+
# Translation step
|
94 |
+
translator = get_translator(target_language)
|
95 |
+
translation_result = translator(english_text)
|
96 |
+
translated_text = translation_result[0]["translation_text"]
|
97 |
+
|
98 |
+
# TTS step: synthesize speech from the translated text
|
99 |
+
tts = get_tts(target_language)
|
100 |
+
tts_result = tts(translated_text)
|
101 |
+
# The TTS pipeline returns a dict with "wav" and "sample_rate"
|
102 |
+
synthesized_audio = (tts_result["sample_rate"], tts_result["wav"])
|
103 |
+
|
104 |
+
return english_text, translated_text, synthesized_audio
|
105 |
+
|
106 |
+
# --------------------------------------------------
|
107 |
+
# Gradio Interface Setup
|
108 |
+
# --------------------------------------------------
|
109 |
+
iface = gr.Interface(
|
110 |
+
fn=predict,
|
111 |
+
inputs=[
|
112 |
+
gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"),
|
113 |
+
gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"),
|
114 |
+
gr.Dropdown(choices=list(translation_models.keys()), value="Spanish", label="Target Language")
|
115 |
+
],
|
116 |
+
outputs=[
|
117 |
+
gr.Textbox(label="English Transcription"),
|
118 |
+
gr.Textbox(label="Translation (Target Language)"),
|
119 |
+
gr.Audio(label="Synthesized Speech in Target Language")
|
120 |
+
],
|
121 |
+
title="Multimodal Language Learning Aid",
|
122 |
+
description=(
|
123 |
+
"This app helps language learners by providing three outputs:\n"
|
124 |
+
"1. English transcription (from ASR or text input),\n"
|
125 |
+
"2. Translation to a target language, and\n"
|
126 |
+
"3. Synthetic speech in the target language.\n\n"
|
127 |
+
"Choose one of the top 10 commonly used languages from the dropdown.\n"
|
128 |
+
"You can either record/upload an English audio sample or enter English text directly."
|
129 |
+
),
|
130 |
+
allow_flagging="never"
|
131 |
+
)
|
132 |
+
|
133 |
+
if __name__ == "__main__":
|
134 |
+
iface.launch()
|