Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import torch
|
|
3 |
import numpy as np
|
4 |
import librosa
|
5 |
from transformers import pipeline
|
6 |
-
|
7 |
|
8 |
# --------------------------------------------------
|
9 |
# ASR Pipeline (for English transcription)
|
@@ -14,7 +14,7 @@ asr = pipeline(
|
|
14 |
)
|
15 |
|
16 |
# --------------------------------------------------
|
17 |
-
# Mapping for Target Languages and
|
18 |
# --------------------------------------------------
|
19 |
translation_models = {
|
20 |
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
@@ -29,8 +29,6 @@ translation_models = {
|
|
29 |
"Korean": "Helsinki-NLP/opus-mt-en-ko"
|
30 |
}
|
31 |
|
32 |
-
# Each language often requires a specific pipeline task name
|
33 |
-
# (e.g., "translation_en_to_zh" rather than "translation_en_to_chinese")
|
34 |
translation_tasks = {
|
35 |
"Spanish": "translation_en_to_es",
|
36 |
"French": "translation_en_to_fr",
|
@@ -44,18 +42,20 @@ translation_tasks = {
|
|
44 |
"Korean": "translation_en_to_ko"
|
45 |
}
|
46 |
|
47 |
-
#
|
|
|
|
|
48 |
tts_models = {
|
49 |
-
"Spanish": "
|
50 |
-
"French": "
|
51 |
-
"German": "
|
52 |
-
"Chinese": "
|
53 |
-
"Russian": "
|
54 |
-
"Arabic": "
|
55 |
-
"Portuguese": "
|
56 |
-
"Japanese": "
|
57 |
-
"Italian": "tts_models/it/tacotron2",
|
58 |
-
"Korean": "
|
59 |
}
|
60 |
|
61 |
# --------------------------------------------------
|
@@ -73,31 +73,28 @@ def get_translator(target_language):
|
|
73 |
|
74 |
model_name = translation_models[target_language]
|
75 |
task_name = translation_tasks[target_language]
|
76 |
-
|
77 |
translator = pipeline(task_name, model=model_name)
|
78 |
translator_cache[target_language] = translator
|
79 |
return translator
|
80 |
|
81 |
def get_tts(target_language):
|
82 |
"""
|
83 |
-
Retrieve or create a TTS pipeline for the specified language
|
84 |
"""
|
85 |
if target_language in tts_cache:
|
86 |
return tts_cache[target_language]
|
87 |
|
88 |
model_name = tts_models.get(target_language)
|
89 |
if model_name is None:
|
90 |
-
# If no TTS model is mapped, raise an error or handle gracefully
|
91 |
raise ValueError(f"No TTS model available for {target_language}.")
|
92 |
-
|
93 |
try:
|
94 |
tts_pipeline = pipeline("text-to-speech", model=model_name)
|
95 |
except Exception as e:
|
96 |
raise ValueError(
|
97 |
-
f"Failed to load TTS model for {target_language}
|
98 |
-
f"Make sure '{model_name}' exists on Hugging Face.\nError: {e}"
|
99 |
)
|
100 |
-
|
101 |
tts_cache[target_language] = tts_pipeline
|
102 |
return tts_pipeline
|
103 |
|
@@ -110,47 +107,38 @@ def predict(audio, text, target_language):
|
|
110 |
2. Translate English -> target_language.
|
111 |
3. Synthesize speech in target_language.
|
112 |
"""
|
113 |
-
# 1
|
114 |
if text.strip():
|
115 |
english_text = text.strip()
|
116 |
elif audio is not None:
|
117 |
sample_rate, audio_data = audio
|
118 |
-
|
119 |
-
# Ensure the audio is float32 for librosa
|
120 |
if audio_data.dtype not in [np.float32, np.float64]:
|
121 |
audio_data = audio_data.astype(np.float32)
|
122 |
-
|
123 |
-
# Convert stereo to mono if needed
|
124 |
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
|
125 |
audio_data = np.mean(audio_data, axis=1)
|
126 |
-
|
127 |
-
# Resample to 16 kHz if necessary
|
128 |
if sample_rate != 16000:
|
129 |
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
|
130 |
-
|
131 |
input_audio = {"array": audio_data, "sampling_rate": 16000}
|
132 |
asr_result = asr(input_audio)
|
133 |
english_text = asr_result["text"]
|
134 |
else:
|
135 |
return "No input provided.", "", None
|
136 |
|
137 |
-
# 2
|
138 |
translator = get_translator(target_language)
|
139 |
try:
|
140 |
translation_result = translator(english_text)
|
141 |
translated_text = translation_result[0]["translation_text"]
|
142 |
except Exception as e:
|
143 |
-
# If there's an error in translation, return partial results
|
144 |
return english_text, f"Translation error: {e}", None
|
145 |
|
146 |
-
# 3
|
147 |
try:
|
148 |
tts_pipeline = get_tts(target_language)
|
149 |
tts_result = tts_pipeline(translated_text)
|
150 |
-
#
|
151 |
synthesized_audio = (tts_result["sample_rate"], tts_result["wav"])
|
152 |
except Exception as e:
|
153 |
-
# If TTS fails, return partial results
|
154 |
return english_text, translated_text, f"TTS error: {e}"
|
155 |
|
156 |
return english_text, translated_text, synthesized_audio
|
@@ -172,13 +160,12 @@ iface = gr.Interface(
|
|
172 |
],
|
173 |
title="Multimodal Language Learning Aid",
|
174 |
description=(
|
175 |
-
"This app
|
176 |
"1. English transcription (from ASR or text input),\n"
|
177 |
"2. Translation to a target language (using Helsinki-NLP models), and\n"
|
178 |
-
"3. Synthetic speech in the target language.\n\n"
|
179 |
"Select one of the top 10 commonly used languages from the dropdown.\n"
|
180 |
-
"Either record/upload an English audio sample or enter English text directly
|
181 |
-
"Note: Some TTS models may not exist or be unstable for certain languages."
|
182 |
),
|
183 |
allow_flagging="never"
|
184 |
)
|
|
|
3 |
import numpy as np
|
4 |
import librosa
|
5 |
from transformers import pipeline
|
6 |
+
import scipy # imported if needed for processing
|
7 |
|
8 |
# --------------------------------------------------
|
9 |
# ASR Pipeline (for English transcription)
|
|
|
14 |
)
|
15 |
|
16 |
# --------------------------------------------------
|
17 |
+
# Mapping for Target Languages and Translation Pipelines
|
18 |
# --------------------------------------------------
|
19 |
translation_models = {
|
20 |
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
|
|
29 |
"Korean": "Helsinki-NLP/opus-mt-en-ko"
|
30 |
}
|
31 |
|
|
|
|
|
32 |
translation_tasks = {
|
33 |
"Spanish": "translation_en_to_es",
|
34 |
"French": "translation_en_to_fr",
|
|
|
42 |
"Korean": "translation_en_to_ko"
|
43 |
}
|
44 |
|
45 |
+
# --------------------------------------------------
|
46 |
+
# TTS Models (using real Facebook MMS TTS & others)
|
47 |
+
# --------------------------------------------------
|
48 |
tts_models = {
|
49 |
+
"Spanish": "facebook/mms-tts-spa",
|
50 |
+
"French": "facebook/mms-tts-fra",
|
51 |
+
"German": "facebook/mms-tts-deu",
|
52 |
+
"Chinese": "facebook/mms-tts-che",
|
53 |
+
"Russian": "facebook/mms-tts-rus",
|
54 |
+
"Arabic": "facebook/mms-tts-ara",
|
55 |
+
"Portuguese": "facebook/mms-tts-por",
|
56 |
+
"Japanese": "esnya/japanese_speecht5_tts",
|
57 |
+
"Italian": "tts_models/it/tacotron2",
|
58 |
+
"Korean": "facebook/mms-tts-kor"
|
59 |
}
|
60 |
|
61 |
# --------------------------------------------------
|
|
|
73 |
|
74 |
model_name = translation_models[target_language]
|
75 |
task_name = translation_tasks[target_language]
|
|
|
76 |
translator = pipeline(task_name, model=model_name)
|
77 |
translator_cache[target_language] = translator
|
78 |
return translator
|
79 |
|
80 |
def get_tts(target_language):
|
81 |
"""
|
82 |
+
Retrieve or create a TTS pipeline for the specified language.
|
83 |
"""
|
84 |
if target_language in tts_cache:
|
85 |
return tts_cache[target_language]
|
86 |
|
87 |
model_name = tts_models.get(target_language)
|
88 |
if model_name is None:
|
|
|
89 |
raise ValueError(f"No TTS model available for {target_language}.")
|
90 |
+
|
91 |
try:
|
92 |
tts_pipeline = pipeline("text-to-speech", model=model_name)
|
93 |
except Exception as e:
|
94 |
raise ValueError(
|
95 |
+
f"Failed to load TTS model for {target_language} with model '{model_name}'.\nError: {e}"
|
|
|
96 |
)
|
97 |
+
|
98 |
tts_cache[target_language] = tts_pipeline
|
99 |
return tts_pipeline
|
100 |
|
|
|
107 |
2. Translate English -> target_language.
|
108 |
3. Synthesize speech in target_language.
|
109 |
"""
|
110 |
+
# Step 1: Get English text from text input (if provided) or from ASR.
|
111 |
if text.strip():
|
112 |
english_text = text.strip()
|
113 |
elif audio is not None:
|
114 |
sample_rate, audio_data = audio
|
|
|
|
|
115 |
if audio_data.dtype not in [np.float32, np.float64]:
|
116 |
audio_data = audio_data.astype(np.float32)
|
|
|
|
|
117 |
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
|
118 |
audio_data = np.mean(audio_data, axis=1)
|
|
|
|
|
119 |
if sample_rate != 16000:
|
120 |
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
|
|
|
121 |
input_audio = {"array": audio_data, "sampling_rate": 16000}
|
122 |
asr_result = asr(input_audio)
|
123 |
english_text = asr_result["text"]
|
124 |
else:
|
125 |
return "No input provided.", "", None
|
126 |
|
127 |
+
# Step 2: Translation
|
128 |
translator = get_translator(target_language)
|
129 |
try:
|
130 |
translation_result = translator(english_text)
|
131 |
translated_text = translation_result[0]["translation_text"]
|
132 |
except Exception as e:
|
|
|
133 |
return english_text, f"Translation error: {e}", None
|
134 |
|
135 |
+
# Step 3: TTS synthesis using Facebook MMS TTS (or alternative) pipeline.
|
136 |
try:
|
137 |
tts_pipeline = get_tts(target_language)
|
138 |
tts_result = tts_pipeline(translated_text)
|
139 |
+
# Expected output: a dict with "wav" and "sample_rate"
|
140 |
synthesized_audio = (tts_result["sample_rate"], tts_result["wav"])
|
141 |
except Exception as e:
|
|
|
142 |
return english_text, translated_text, f"TTS error: {e}"
|
143 |
|
144 |
return english_text, translated_text, synthesized_audio
|
|
|
160 |
],
|
161 |
title="Multimodal Language Learning Aid",
|
162 |
description=(
|
163 |
+
"This app provides three outputs:\n"
|
164 |
"1. English transcription (from ASR or text input),\n"
|
165 |
"2. Translation to a target language (using Helsinki-NLP models), and\n"
|
166 |
+
"3. Synthetic speech in the target language (using Facebook MMS TTS or equivalent).\n\n"
|
167 |
"Select one of the top 10 commonly used languages from the dropdown.\n"
|
168 |
+
"Either record/upload an English audio sample or enter English text directly."
|
|
|
169 |
),
|
170 |
allow_flagging="never"
|
171 |
)
|