Update app.py
Browse files
app.py
CHANGED
|
@@ -3,8 +3,6 @@ import torch
|
|
| 3 |
import numpy as np
|
| 4 |
import librosa
|
| 5 |
from transformers import pipeline
|
| 6 |
-
from transformers import VitsModel, AutoTokenizer
|
| 7 |
-
import scipy # imported if needed for processing
|
| 8 |
|
| 9 |
# --------------------------------------------------
|
| 10 |
# ASR Pipeline (for English transcription)
|
|
@@ -15,48 +13,24 @@ asr = pipeline(
|
|
| 15 |
)
|
| 16 |
|
| 17 |
# --------------------------------------------------
|
| 18 |
-
# Mapping for Target Languages
|
| 19 |
# --------------------------------------------------
|
| 20 |
translation_models = {
|
| 21 |
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
| 22 |
-
"French": "Helsinki-NLP/opus-mt-en-fr",
|
| 23 |
-
"German": "Helsinki-NLP/opus-mt-en-de",
|
| 24 |
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
|
| 25 |
-
"
|
| 26 |
-
"Arabic": "Helsinki-NLP/opus-mt-en-ar",
|
| 27 |
-
"Portuguese": "Helsinki-NLP/opus-mt-en-pt",
|
| 28 |
-
"Japanese": "Helsinki-NLP/opus-mt-en-ja",
|
| 29 |
-
"Italian": "Helsinki-NLP/opus-mt-en-it",
|
| 30 |
-
"Korean": "Helsinki-NLP/opus-mt-en-ko"
|
| 31 |
}
|
| 32 |
|
| 33 |
translation_tasks = {
|
| 34 |
"Spanish": "translation_en_to_es",
|
| 35 |
-
"French": "translation_en_to_fr",
|
| 36 |
-
"German": "translation_en_to_de",
|
| 37 |
"Chinese": "translation_en_to_zh",
|
| 38 |
-
"
|
| 39 |
-
"Arabic": "translation_en_to_ar",
|
| 40 |
-
"Portuguese": "translation_en_to_pt",
|
| 41 |
-
"Japanese": "translation_en_to_ja",
|
| 42 |
-
"Italian": "translation_en_to_it",
|
| 43 |
-
"Korean": "translation_en_to_ko"
|
| 44 |
}
|
| 45 |
|
| 46 |
-
# --------------------------------------------------
|
| 47 |
-
# TTS Models (using real Facebook MMS TTS & others)
|
| 48 |
-
# --------------------------------------------------
|
| 49 |
tts_models = {
|
| 50 |
"Spanish": "facebook/mms-tts-spa",
|
| 51 |
-
"French": "facebook/mms-tts-fra",
|
| 52 |
-
"German": "facebook/mms-tts-deu",
|
| 53 |
"Chinese": "facebook/mms-tts-che",
|
| 54 |
-
"
|
| 55 |
-
"Arabic": "facebook/mms-tts-ara",
|
| 56 |
-
"Portuguese": "facebook/mms-tts-por",
|
| 57 |
-
"Japanese": "esnya/japanese_speecht5_tts",
|
| 58 |
-
"Italian": "tts_models/it/tacotron2",
|
| 59 |
-
"Korean": "facebook/mms-tts-kor"
|
| 60 |
}
|
| 61 |
|
| 62 |
# --------------------------------------------------
|
|
@@ -66,12 +40,8 @@ translator_cache = {}
|
|
| 66 |
tts_cache = {}
|
| 67 |
|
| 68 |
def get_translator(target_language):
|
| 69 |
-
"""
|
| 70 |
-
Retrieve or create a translation pipeline for the specified language.
|
| 71 |
-
"""
|
| 72 |
if target_language in translator_cache:
|
| 73 |
return translator_cache[target_language]
|
| 74 |
-
|
| 75 |
model_name = translation_models[target_language]
|
| 76 |
task_name = translation_tasks[target_language]
|
| 77 |
translator = pipeline(task_name, model=model_name)
|
|
@@ -79,23 +49,15 @@ def get_translator(target_language):
|
|
| 79 |
return translator
|
| 80 |
|
| 81 |
def get_tts(target_language):
|
| 82 |
-
"""
|
| 83 |
-
Retrieve or create a TTS pipeline for the specified language.
|
| 84 |
-
"""
|
| 85 |
if target_language in tts_cache:
|
| 86 |
return tts_cache[target_language]
|
| 87 |
-
|
| 88 |
model_name = tts_models.get(target_language)
|
| 89 |
if model_name is None:
|
| 90 |
raise ValueError(f"No TTS model available for {target_language}.")
|
| 91 |
-
|
| 92 |
try:
|
| 93 |
tts_pipeline = pipeline("text-to-speech", model=model_name)
|
| 94 |
except Exception as e:
|
| 95 |
-
raise ValueError(
|
| 96 |
-
f"Failed to load TTS model for {target_language} with model '{model_name}'.\nError: {e}"
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
tts_cache[target_language] = tts_pipeline
|
| 100 |
return tts_pipeline
|
| 101 |
|
|
@@ -103,12 +65,7 @@ def get_tts(target_language):
|
|
| 103 |
# Prediction Function
|
| 104 |
# --------------------------------------------------
|
| 105 |
def predict(audio, text, target_language):
|
| 106 |
-
|
| 107 |
-
1. Obtain English text (from text input or ASR).
|
| 108 |
-
2. Translate English -> target_language.
|
| 109 |
-
3. Synthesize speech in target_language.
|
| 110 |
-
"""
|
| 111 |
-
# Step 1: Get English text from text input (if provided) or from ASR.
|
| 112 |
if text.strip():
|
| 113 |
english_text = text.strip()
|
| 114 |
elif audio is not None:
|
|
@@ -125,7 +82,7 @@ def predict(audio, text, target_language):
|
|
| 125 |
else:
|
| 126 |
return "No input provided.", "", None
|
| 127 |
|
| 128 |
-
# Step 2:
|
| 129 |
translator = get_translator(target_language)
|
| 130 |
try:
|
| 131 |
translation_result = translator(english_text)
|
|
@@ -133,11 +90,10 @@ def predict(audio, text, target_language):
|
|
| 133 |
except Exception as e:
|
| 134 |
return english_text, f"Translation error: {e}", None
|
| 135 |
|
| 136 |
-
# Step 3:
|
| 137 |
try:
|
| 138 |
tts_pipeline = get_tts(target_language)
|
| 139 |
tts_result = tts_pipeline(translated_text)
|
| 140 |
-
# Expected output: a dict with "wav" and "sample_rate"
|
| 141 |
synthesized_audio = (tts_result["sample_rate"], tts_result["wav"])
|
| 142 |
except Exception as e:
|
| 143 |
return english_text, translated_text, f"TTS error: {e}"
|
|
@@ -163,9 +119,8 @@ iface = gr.Interface(
|
|
| 163 |
description=(
|
| 164 |
"This app provides three outputs:\n"
|
| 165 |
"1. English transcription (from ASR or text input),\n"
|
| 166 |
-
"2. Translation to
|
| 167 |
"3. Synthetic speech in the target language (using Facebook MMS TTS or equivalent).\n\n"
|
| 168 |
-
"Select one of the top 10 commonly used languages from the dropdown.\n"
|
| 169 |
"Either record/upload an English audio sample or enter English text directly."
|
| 170 |
),
|
| 171 |
allow_flagging="never"
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import librosa
|
| 5 |
from transformers import pipeline
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# --------------------------------------------------
|
| 8 |
# ASR Pipeline (for English transcription)
|
|
|
|
| 13 |
)
|
| 14 |
|
| 15 |
# --------------------------------------------------
|
| 16 |
+
# Mapping for Target Languages (Spanish, Chinese, Japanese)
|
| 17 |
# --------------------------------------------------
|
| 18 |
translation_models = {
|
| 19 |
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
|
|
|
|
|
|
| 20 |
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
|
| 21 |
+
"Japanese": "Helsinki-NLP/opus-mt-en-ja"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
}
|
| 23 |
|
| 24 |
translation_tasks = {
|
| 25 |
"Spanish": "translation_en_to_es",
|
|
|
|
|
|
|
| 26 |
"Chinese": "translation_en_to_zh",
|
| 27 |
+
"Japanese": "translation_en_to_ja"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
}
|
| 29 |
|
|
|
|
|
|
|
|
|
|
| 30 |
tts_models = {
|
| 31 |
"Spanish": "facebook/mms-tts-spa",
|
|
|
|
|
|
|
| 32 |
"Chinese": "facebook/mms-tts-che",
|
| 33 |
+
"Japanese": "esnya/japanese_speecht5_tts"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
}
|
| 35 |
|
| 36 |
# --------------------------------------------------
|
|
|
|
| 40 |
tts_cache = {}
|
| 41 |
|
| 42 |
def get_translator(target_language):
|
|
|
|
|
|
|
|
|
|
| 43 |
if target_language in translator_cache:
|
| 44 |
return translator_cache[target_language]
|
|
|
|
| 45 |
model_name = translation_models[target_language]
|
| 46 |
task_name = translation_tasks[target_language]
|
| 47 |
translator = pipeline(task_name, model=model_name)
|
|
|
|
| 49 |
return translator
|
| 50 |
|
| 51 |
def get_tts(target_language):
|
|
|
|
|
|
|
|
|
|
| 52 |
if target_language in tts_cache:
|
| 53 |
return tts_cache[target_language]
|
|
|
|
| 54 |
model_name = tts_models.get(target_language)
|
| 55 |
if model_name is None:
|
| 56 |
raise ValueError(f"No TTS model available for {target_language}.")
|
|
|
|
| 57 |
try:
|
| 58 |
tts_pipeline = pipeline("text-to-speech", model=model_name)
|
| 59 |
except Exception as e:
|
| 60 |
+
raise ValueError(f"Failed to load TTS model for {target_language} with model '{model_name}'.\nError: {e}")
|
|
|
|
|
|
|
|
|
|
| 61 |
tts_cache[target_language] = tts_pipeline
|
| 62 |
return tts_pipeline
|
| 63 |
|
|
|
|
| 65 |
# Prediction Function
|
| 66 |
# --------------------------------------------------
|
| 67 |
def predict(audio, text, target_language):
|
| 68 |
+
# Step 1: Obtain English text from text input if provided, otherwise use ASR.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
if text.strip():
|
| 70 |
english_text = text.strip()
|
| 71 |
elif audio is not None:
|
|
|
|
| 82 |
else:
|
| 83 |
return "No input provided.", "", None
|
| 84 |
|
| 85 |
+
# Step 2: Translate the English text to the target language.
|
| 86 |
translator = get_translator(target_language)
|
| 87 |
try:
|
| 88 |
translation_result = translator(english_text)
|
|
|
|
| 90 |
except Exception as e:
|
| 91 |
return english_text, f"Translation error: {e}", None
|
| 92 |
|
| 93 |
+
# Step 3: Synthesize speech using the TTS pipeline.
|
| 94 |
try:
|
| 95 |
tts_pipeline = get_tts(target_language)
|
| 96 |
tts_result = tts_pipeline(translated_text)
|
|
|
|
| 97 |
synthesized_audio = (tts_result["sample_rate"], tts_result["wav"])
|
| 98 |
except Exception as e:
|
| 99 |
return english_text, translated_text, f"TTS error: {e}"
|
|
|
|
| 119 |
description=(
|
| 120 |
"This app provides three outputs:\n"
|
| 121 |
"1. English transcription (from ASR or text input),\n"
|
| 122 |
+
"2. Translation to Spanish, Chinese, or Japanese (using Helsinki-NLP models), and\n"
|
| 123 |
"3. Synthetic speech in the target language (using Facebook MMS TTS or equivalent).\n\n"
|
|
|
|
| 124 |
"Either record/upload an English audio sample or enter English text directly."
|
| 125 |
),
|
| 126 |
allow_flagging="never"
|