Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,6 @@ import torch
|
|
3 |
import numpy as np
|
4 |
import librosa
|
5 |
from transformers import pipeline
|
6 |
-
from transformers import VitsModel, AutoTokenizer
|
7 |
-
import scipy # imported if needed for processing
|
8 |
|
9 |
# --------------------------------------------------
|
10 |
# ASR Pipeline (for English transcription)
|
@@ -15,48 +13,24 @@ asr = pipeline(
|
|
15 |
)
|
16 |
|
17 |
# --------------------------------------------------
|
18 |
-
# Mapping for Target Languages
|
19 |
# --------------------------------------------------
|
20 |
translation_models = {
|
21 |
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
22 |
-
"French": "Helsinki-NLP/opus-mt-en-fr",
|
23 |
-
"German": "Helsinki-NLP/opus-mt-en-de",
|
24 |
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
|
25 |
-
"
|
26 |
-
"Arabic": "Helsinki-NLP/opus-mt-en-ar",
|
27 |
-
"Portuguese": "Helsinki-NLP/opus-mt-en-pt",
|
28 |
-
"Japanese": "Helsinki-NLP/opus-mt-en-ja",
|
29 |
-
"Italian": "Helsinki-NLP/opus-mt-en-it",
|
30 |
-
"Korean": "Helsinki-NLP/opus-mt-en-ko"
|
31 |
}
|
32 |
|
33 |
translation_tasks = {
|
34 |
"Spanish": "translation_en_to_es",
|
35 |
-
"French": "translation_en_to_fr",
|
36 |
-
"German": "translation_en_to_de",
|
37 |
"Chinese": "translation_en_to_zh",
|
38 |
-
"
|
39 |
-
"Arabic": "translation_en_to_ar",
|
40 |
-
"Portuguese": "translation_en_to_pt",
|
41 |
-
"Japanese": "translation_en_to_ja",
|
42 |
-
"Italian": "translation_en_to_it",
|
43 |
-
"Korean": "translation_en_to_ko"
|
44 |
}
|
45 |
|
46 |
-
# --------------------------------------------------
|
47 |
-
# TTS Models (using real Facebook MMS TTS & others)
|
48 |
-
# --------------------------------------------------
|
49 |
tts_models = {
|
50 |
"Spanish": "facebook/mms-tts-spa",
|
51 |
-
"French": "facebook/mms-tts-fra",
|
52 |
-
"German": "facebook/mms-tts-deu",
|
53 |
"Chinese": "facebook/mms-tts-che",
|
54 |
-
"
|
55 |
-
"Arabic": "facebook/mms-tts-ara",
|
56 |
-
"Portuguese": "facebook/mms-tts-por",
|
57 |
-
"Japanese": "esnya/japanese_speecht5_tts",
|
58 |
-
"Italian": "tts_models/it/tacotron2",
|
59 |
-
"Korean": "facebook/mms-tts-kor"
|
60 |
}
|
61 |
|
62 |
# --------------------------------------------------
|
@@ -66,12 +40,8 @@ translator_cache = {}
|
|
66 |
tts_cache = {}
|
67 |
|
68 |
def get_translator(target_language):
|
69 |
-
"""
|
70 |
-
Retrieve or create a translation pipeline for the specified language.
|
71 |
-
"""
|
72 |
if target_language in translator_cache:
|
73 |
return translator_cache[target_language]
|
74 |
-
|
75 |
model_name = translation_models[target_language]
|
76 |
task_name = translation_tasks[target_language]
|
77 |
translator = pipeline(task_name, model=model_name)
|
@@ -79,23 +49,15 @@ def get_translator(target_language):
|
|
79 |
return translator
|
80 |
|
81 |
def get_tts(target_language):
|
82 |
-
"""
|
83 |
-
Retrieve or create a TTS pipeline for the specified language.
|
84 |
-
"""
|
85 |
if target_language in tts_cache:
|
86 |
return tts_cache[target_language]
|
87 |
-
|
88 |
model_name = tts_models.get(target_language)
|
89 |
if model_name is None:
|
90 |
raise ValueError(f"No TTS model available for {target_language}.")
|
91 |
-
|
92 |
try:
|
93 |
tts_pipeline = pipeline("text-to-speech", model=model_name)
|
94 |
except Exception as e:
|
95 |
-
raise ValueError(
|
96 |
-
f"Failed to load TTS model for {target_language} with model '{model_name}'.\nError: {e}"
|
97 |
-
)
|
98 |
-
|
99 |
tts_cache[target_language] = tts_pipeline
|
100 |
return tts_pipeline
|
101 |
|
@@ -103,12 +65,7 @@ def get_tts(target_language):
|
|
103 |
# Prediction Function
|
104 |
# --------------------------------------------------
|
105 |
def predict(audio, text, target_language):
|
106 |
-
|
107 |
-
1. Obtain English text (from text input or ASR).
|
108 |
-
2. Translate English -> target_language.
|
109 |
-
3. Synthesize speech in target_language.
|
110 |
-
"""
|
111 |
-
# Step 1: Get English text from text input (if provided) or from ASR.
|
112 |
if text.strip():
|
113 |
english_text = text.strip()
|
114 |
elif audio is not None:
|
@@ -125,7 +82,7 @@ def predict(audio, text, target_language):
|
|
125 |
else:
|
126 |
return "No input provided.", "", None
|
127 |
|
128 |
-
# Step 2:
|
129 |
translator = get_translator(target_language)
|
130 |
try:
|
131 |
translation_result = translator(english_text)
|
@@ -133,11 +90,10 @@ def predict(audio, text, target_language):
|
|
133 |
except Exception as e:
|
134 |
return english_text, f"Translation error: {e}", None
|
135 |
|
136 |
-
# Step 3:
|
137 |
try:
|
138 |
tts_pipeline = get_tts(target_language)
|
139 |
tts_result = tts_pipeline(translated_text)
|
140 |
-
# Expected output: a dict with "wav" and "sample_rate"
|
141 |
synthesized_audio = (tts_result["sample_rate"], tts_result["wav"])
|
142 |
except Exception as e:
|
143 |
return english_text, translated_text, f"TTS error: {e}"
|
@@ -163,9 +119,8 @@ iface = gr.Interface(
|
|
163 |
description=(
|
164 |
"This app provides three outputs:\n"
|
165 |
"1. English transcription (from ASR or text input),\n"
|
166 |
-
"2. Translation to
|
167 |
"3. Synthetic speech in the target language (using Facebook MMS TTS or equivalent).\n\n"
|
168 |
-
"Select one of the top 10 commonly used languages from the dropdown.\n"
|
169 |
"Either record/upload an English audio sample or enter English text directly."
|
170 |
),
|
171 |
allow_flagging="never"
|
|
|
3 |
import numpy as np
|
4 |
import librosa
|
5 |
from transformers import pipeline
|
|
|
|
|
6 |
|
7 |
# --------------------------------------------------
|
8 |
# ASR Pipeline (for English transcription)
|
|
|
13 |
)
|
14 |
|
15 |
# --------------------------------------------------
|
16 |
+
# Mapping for Target Languages (Spanish, Chinese, Japanese)
|
17 |
# --------------------------------------------------
|
18 |
translation_models = {
|
19 |
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
|
|
|
|
20 |
"Chinese": "Helsinki-NLP/opus-mt-en-zh",
|
21 |
+
"Japanese": "Helsinki-NLP/opus-mt-en-ja"
|
|
|
|
|
|
|
|
|
|
|
22 |
}
|
23 |
|
24 |
translation_tasks = {
|
25 |
"Spanish": "translation_en_to_es",
|
|
|
|
|
26 |
"Chinese": "translation_en_to_zh",
|
27 |
+
"Japanese": "translation_en_to_ja"
|
|
|
|
|
|
|
|
|
|
|
28 |
}
|
29 |
|
|
|
|
|
|
|
30 |
tts_models = {
|
31 |
"Spanish": "facebook/mms-tts-spa",
|
|
|
|
|
32 |
"Chinese": "facebook/mms-tts-che",
|
33 |
+
"Japanese": "esnya/japanese_speecht5_tts"
|
|
|
|
|
|
|
|
|
|
|
34 |
}
|
35 |
|
36 |
# --------------------------------------------------
|
|
|
40 |
tts_cache = {}
|
41 |
|
42 |
def get_translator(target_language):
|
|
|
|
|
|
|
43 |
if target_language in translator_cache:
|
44 |
return translator_cache[target_language]
|
|
|
45 |
model_name = translation_models[target_language]
|
46 |
task_name = translation_tasks[target_language]
|
47 |
translator = pipeline(task_name, model=model_name)
|
|
|
49 |
return translator
|
50 |
|
51 |
def get_tts(target_language):
|
|
|
|
|
|
|
52 |
if target_language in tts_cache:
|
53 |
return tts_cache[target_language]
|
|
|
54 |
model_name = tts_models.get(target_language)
|
55 |
if model_name is None:
|
56 |
raise ValueError(f"No TTS model available for {target_language}.")
|
|
|
57 |
try:
|
58 |
tts_pipeline = pipeline("text-to-speech", model=model_name)
|
59 |
except Exception as e:
|
60 |
+
raise ValueError(f"Failed to load TTS model for {target_language} with model '{model_name}'.\nError: {e}")
|
|
|
|
|
|
|
61 |
tts_cache[target_language] = tts_pipeline
|
62 |
return tts_pipeline
|
63 |
|
|
|
65 |
# Prediction Function
|
66 |
# --------------------------------------------------
|
67 |
def predict(audio, text, target_language):
|
68 |
+
# Step 1: Obtain English text from text input if provided, otherwise use ASR.
|
|
|
|
|
|
|
|
|
|
|
69 |
if text.strip():
|
70 |
english_text = text.strip()
|
71 |
elif audio is not None:
|
|
|
82 |
else:
|
83 |
return "No input provided.", "", None
|
84 |
|
85 |
+
# Step 2: Translate the English text to the target language.
|
86 |
translator = get_translator(target_language)
|
87 |
try:
|
88 |
translation_result = translator(english_text)
|
|
|
90 |
except Exception as e:
|
91 |
return english_text, f"Translation error: {e}", None
|
92 |
|
93 |
+
# Step 3: Synthesize speech using the TTS pipeline.
|
94 |
try:
|
95 |
tts_pipeline = get_tts(target_language)
|
96 |
tts_result = tts_pipeline(translated_text)
|
|
|
97 |
synthesized_audio = (tts_result["sample_rate"], tts_result["wav"])
|
98 |
except Exception as e:
|
99 |
return english_text, translated_text, f"TTS error: {e}"
|
|
|
119 |
description=(
|
120 |
"This app provides three outputs:\n"
|
121 |
"1. English transcription (from ASR or text input),\n"
|
122 |
+
"2. Translation to Spanish, Chinese, or Japanese (using Helsinki-NLP models), and\n"
|
123 |
"3. Synthetic speech in the target language (using Facebook MMS TTS or equivalent).\n\n"
|
|
|
124 |
"Either record/upload an English audio sample or enter English text directly."
|
125 |
),
|
126 |
allow_flagging="never"
|