Update app.py
Browse files
app.py
CHANGED
|
@@ -2,11 +2,12 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
import librosa
|
|
|
|
| 5 |
from transformers import pipeline, VitsModel, AutoTokenizer
|
| 6 |
-
|
| 7 |
|
| 8 |
# ------------------------------------------------------
|
| 9 |
-
# 1. ASR Pipeline (English)
|
| 10 |
# ------------------------------------------------------
|
| 11 |
asr = pipeline(
|
| 12 |
"automatic-speech-recognition",
|
|
@@ -29,36 +30,33 @@ translation_tasks = {
|
|
| 29 |
}
|
| 30 |
|
| 31 |
# ------------------------------------------------------
|
| 32 |
-
# 3. TTS
|
| 33 |
-
# - Spanish:
|
| 34 |
-
# - Chinese:
|
| 35 |
-
# - Japanese: myshell-ai/MeloTTS-Japanese
|
| 36 |
# ------------------------------------------------------
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
"Japanese": {
|
| 47 |
-
"model_id": "myshell-ai/MeloTTS-Japanese",
|
| 48 |
-
"architecture": "vits"
|
| 49 |
-
}
|
| 50 |
}
|
| 51 |
|
| 52 |
# ------------------------------------------------------
|
| 53 |
-
# 4.
|
| 54 |
# ------------------------------------------------------
|
| 55 |
translator_cache = {}
|
| 56 |
-
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
# ------------------------------------------------------
|
| 59 |
-
# 5. Translator Helper
|
| 60 |
-
# ------------------------------------------------------
|
| 61 |
def get_translator(lang):
|
|
|
|
|
|
|
|
|
|
| 62 |
if lang in translator_cache:
|
| 63 |
return translator_cache[lang]
|
| 64 |
model_name = translation_models[lang]
|
|
@@ -67,66 +65,91 @@ def get_translator(lang):
|
|
| 67 |
translator_cache[lang] = translator
|
| 68 |
return translator
|
| 69 |
|
| 70 |
-
|
| 71 |
-
# 6. TTS Loading Helper
|
| 72 |
-
# ------------------------------------------------------
|
| 73 |
-
def get_tts_model(lang):
|
| 74 |
"""
|
| 75 |
-
|
| 76 |
"""
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
config = tts_config.get(lang)
|
| 81 |
-
if config is None:
|
| 82 |
-
raise ValueError(f"No TTS config found for language: {lang}")
|
| 83 |
-
|
| 84 |
-
model_id = config["model_id"]
|
| 85 |
-
arch = config["architecture"]
|
| 86 |
|
| 87 |
try:
|
| 88 |
-
|
| 89 |
model = VitsModel.from_pretrained(model_id)
|
| 90 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
except Exception as e:
|
| 92 |
-
raise RuntimeError(f"Failed to load
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
# ------------------------------------------------------
|
| 98 |
-
#
|
| 99 |
# ------------------------------------------------------
|
| 100 |
-
def
|
| 101 |
"""
|
| 102 |
-
|
| 103 |
-
Returns (sample_rate, np_array).
|
| 104 |
"""
|
| 105 |
-
model, tokenizer
|
| 106 |
inputs = tokenizer(text, return_tensors="pt")
|
| 107 |
-
|
| 108 |
with torch.no_grad():
|
| 109 |
output = model(**inputs)
|
| 110 |
-
|
| 111 |
-
# VitsModel output is typically `.waveform`
|
| 112 |
if not hasattr(output, "waveform"):
|
| 113 |
-
raise RuntimeError("
|
| 114 |
-
|
| 115 |
-
waveform_tensor = output.waveform
|
| 116 |
-
waveform = waveform_tensor.squeeze().cpu().numpy()
|
| 117 |
-
|
| 118 |
-
# Typically 16 kHz for these VITS models
|
| 119 |
sample_rate = 16000
|
| 120 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
# ------------------------------------------------------
|
| 123 |
-
#
|
| 124 |
# ------------------------------------------------------
|
| 125 |
def predict(audio, text, target_language):
|
| 126 |
"""
|
| 127 |
-
1.
|
| 128 |
-
2. Translate
|
| 129 |
-
3. TTS
|
| 130 |
"""
|
| 131 |
# Step 1: English text
|
| 132 |
if text.strip():
|
|
@@ -138,7 +161,7 @@ def predict(audio, text, target_language):
|
|
| 138 |
if audio_data.dtype not in [np.float32, np.float64]:
|
| 139 |
audio_data = audio_data.astype(np.float32)
|
| 140 |
|
| 141 |
-
# Stereo -> mono
|
| 142 |
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
|
| 143 |
audio_data = np.mean(audio_data, axis=1)
|
| 144 |
|
|
@@ -162,15 +185,18 @@ def predict(audio, text, target_language):
|
|
| 162 |
|
| 163 |
# Step 3: TTS
|
| 164 |
try:
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
except Exception as e:
|
| 167 |
-
# Return error info in place of audio
|
| 168 |
return english_text, translated_text, f"TTS error: {e}"
|
| 169 |
|
| 170 |
-
return english_text, translated_text, (
|
| 171 |
|
| 172 |
# ------------------------------------------------------
|
| 173 |
-
#
|
| 174 |
# ------------------------------------------------------
|
| 175 |
iface = gr.Interface(
|
| 176 |
fn=predict,
|
|
@@ -187,11 +213,15 @@ iface = gr.Interface(
|
|
| 187 |
title="Multimodal Language Learning Aid",
|
| 188 |
description=(
|
| 189 |
"1. Transcribes English speech using Wav2Vec2 (or takes English text).\n"
|
| 190 |
-
"2. Translates to Spanish, Chinese, or Japanese (Helsinki-NLP models).\n"
|
| 191 |
-
"3.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
),
|
| 193 |
allow_flagging="never"
|
| 194 |
)
|
| 195 |
|
| 196 |
if __name__ == "__main__":
|
| 197 |
-
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
import librosa
|
| 5 |
+
import soundfile as sf # likely needed by the pipeline or local saving
|
| 6 |
from transformers import pipeline, VitsModel, AutoTokenizer
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
|
| 9 |
# ------------------------------------------------------
|
| 10 |
+
# 1. ASR Pipeline (English) - Wav2Vec2
|
| 11 |
# ------------------------------------------------------
|
| 12 |
asr = pipeline(
|
| 13 |
"automatic-speech-recognition",
|
|
|
|
| 30 |
}
|
| 31 |
|
| 32 |
# ------------------------------------------------------
|
| 33 |
+
# 3. TTS Configuration
|
| 34 |
+
# - Spanish: VITS-based MMS TTS
|
| 35 |
+
# - Chinese & Japanese: Microsoft SpeechT5
|
|
|
|
| 36 |
# ------------------------------------------------------
|
| 37 |
+
# We'll store them as keys for convenience
|
| 38 |
+
SPANISH_KEY = "Spanish"
|
| 39 |
+
CHINESE_KEY = "Chinese"
|
| 40 |
+
JAPANESE_KEY = "Japanese"
|
| 41 |
+
|
| 42 |
+
# VITS config for Spanish only
|
| 43 |
+
mms_spanish_config = {
|
| 44 |
+
"model_id": "facebook/mms-tts-spa",
|
| 45 |
+
"architecture": "vits"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
}
|
| 47 |
|
| 48 |
# ------------------------------------------------------
|
| 49 |
+
# 4. Create TTS Pipelines / Models Once (Caching)
|
| 50 |
# ------------------------------------------------------
|
| 51 |
translator_cache = {}
|
| 52 |
+
vits_model_cache = None # for Spanish
|
| 53 |
+
speech_t5_pipeline_cache = None # for Chinese/Japanese
|
| 54 |
+
speech_t5_speaker_embedding = None
|
| 55 |
|
|
|
|
|
|
|
|
|
|
| 56 |
def get_translator(lang):
|
| 57 |
+
"""
|
| 58 |
+
Return a cached MarianMT translator for the specified language.
|
| 59 |
+
"""
|
| 60 |
if lang in translator_cache:
|
| 61 |
return translator_cache[lang]
|
| 62 |
model_name = translation_models[lang]
|
|
|
|
| 65 |
translator_cache[lang] = translator
|
| 66 |
return translator
|
| 67 |
|
| 68 |
+
def load_spanish_vits():
|
|
|
|
|
|
|
|
|
|
| 69 |
"""
|
| 70 |
+
Load and cache the Spanish VITS model + tokenizer (facebook/mms-tts-spa).
|
| 71 |
"""
|
| 72 |
+
global vits_model_cache
|
| 73 |
+
if vits_model_cache is not None:
|
| 74 |
+
return vits_model_cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
try:
|
| 77 |
+
model_id = mms_spanish_config["model_id"]
|
| 78 |
model = VitsModel.from_pretrained(model_id)
|
| 79 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 80 |
+
vits_model_cache = (model, tokenizer)
|
| 81 |
+
except Exception as e:
|
| 82 |
+
raise RuntimeError(f"Failed to load Spanish TTS model {mms_spanish_config['model_id']}: {e}")
|
| 83 |
+
|
| 84 |
+
return vits_model_cache
|
| 85 |
+
|
| 86 |
+
def load_speech_t5_pipeline():
|
| 87 |
+
"""
|
| 88 |
+
Load and cache the Microsoft SpeechT5 text-to-speech pipeline
|
| 89 |
+
and a default speaker embedding.
|
| 90 |
+
"""
|
| 91 |
+
global speech_t5_pipeline_cache, speech_t5_speaker_embedding
|
| 92 |
+
if speech_t5_pipeline_cache is not None and speech_t5_speaker_embedding is not None:
|
| 93 |
+
return speech_t5_pipeline_cache, speech_t5_speaker_embedding
|
| 94 |
+
|
| 95 |
+
try:
|
| 96 |
+
# Create the pipeline
|
| 97 |
+
# The pipeline is named "text-to-speech" in Transformers >= 4.29
|
| 98 |
+
t5_pipe = pipeline("text-to-speech", model="microsoft/speecht5_tts")
|
| 99 |
except Exception as e:
|
| 100 |
+
raise RuntimeError(f"Failed to load Microsoft SpeechT5 pipeline: {e}")
|
| 101 |
|
| 102 |
+
# Load a default speaker embedding
|
| 103 |
+
try:
|
| 104 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
| 105 |
+
# Just pick an arbitrary index for speaker embedding
|
| 106 |
+
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
| 107 |
+
except Exception as e:
|
| 108 |
+
raise RuntimeError(f"Failed to load default speaker embedding: {e}")
|
| 109 |
+
|
| 110 |
+
speech_t5_pipeline_cache = t5_pipe
|
| 111 |
+
speech_t5_speaker_embedding = speaker_embedding
|
| 112 |
+
return t5_pipe, speaker_embedding
|
| 113 |
|
| 114 |
# ------------------------------------------------------
|
| 115 |
+
# 5. TTS Inference Helpers
|
| 116 |
# ------------------------------------------------------
|
| 117 |
+
def run_vits_inference(text):
|
| 118 |
"""
|
| 119 |
+
For Spanish TTS using MMS (facebook/mms-tts-spa).
|
|
|
|
| 120 |
"""
|
| 121 |
+
model, tokenizer = load_spanish_vits()
|
| 122 |
inputs = tokenizer(text, return_tensors="pt")
|
|
|
|
| 123 |
with torch.no_grad():
|
| 124 |
output = model(**inputs)
|
|
|
|
|
|
|
| 125 |
if not hasattr(output, "waveform"):
|
| 126 |
+
raise RuntimeError("VITS output does not contain 'waveform'.")
|
| 127 |
+
waveform = output.waveform.squeeze().cpu().numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
sample_rate = 16000
|
| 129 |
+
return sample_rate, waveform
|
| 130 |
+
|
| 131 |
+
def run_speecht5_inference(text):
|
| 132 |
+
"""
|
| 133 |
+
For Chinese & Japanese TTS using Microsoft SpeechT5 pipeline.
|
| 134 |
+
"""
|
| 135 |
+
t5_pipe, speaker_embedding = load_speech_t5_pipeline()
|
| 136 |
+
# The pipeline returns a dict with 'audio' (numpy) and 'sampling_rate'
|
| 137 |
+
result = t5_pipe(
|
| 138 |
+
text,
|
| 139 |
+
forward_params={"speaker_embeddings": speaker_embedding}
|
| 140 |
+
)
|
| 141 |
+
waveform = result["audio"]
|
| 142 |
+
sample_rate = result["sampling_rate"]
|
| 143 |
+
return sample_rate, waveform
|
| 144 |
|
| 145 |
# ------------------------------------------------------
|
| 146 |
+
# 6. Main Prediction Function
|
| 147 |
# ------------------------------------------------------
|
| 148 |
def predict(audio, text, target_language):
|
| 149 |
"""
|
| 150 |
+
1. Get English text (ASR if audio provided, else text).
|
| 151 |
+
2. Translate to target_language.
|
| 152 |
+
3. TTS with the chosen approach (VITS for Spanish, SpeechT5 for Chinese/Japanese).
|
| 153 |
"""
|
| 154 |
# Step 1: English text
|
| 155 |
if text.strip():
|
|
|
|
| 161 |
if audio_data.dtype not in [np.float32, np.float64]:
|
| 162 |
audio_data = audio_data.astype(np.float32)
|
| 163 |
|
| 164 |
+
# Stereo -> mono
|
| 165 |
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1:
|
| 166 |
audio_data = np.mean(audio_data, axis=1)
|
| 167 |
|
|
|
|
| 185 |
|
| 186 |
# Step 3: TTS
|
| 187 |
try:
|
| 188 |
+
if target_language == SPANISH_KEY:
|
| 189 |
+
sr, waveform = run_vits_inference(translated_text)
|
| 190 |
+
else:
|
| 191 |
+
# Chinese or Japanese -> SpeechT5
|
| 192 |
+
sr, waveform = run_speecht5_inference(translated_text)
|
| 193 |
except Exception as e:
|
|
|
|
| 194 |
return english_text, translated_text, f"TTS error: {e}"
|
| 195 |
|
| 196 |
+
return english_text, translated_text, (sr, waveform)
|
| 197 |
|
| 198 |
# ------------------------------------------------------
|
| 199 |
+
# 7. Gradio Interface
|
| 200 |
# ------------------------------------------------------
|
| 201 |
iface = gr.Interface(
|
| 202 |
fn=predict,
|
|
|
|
| 213 |
title="Multimodal Language Learning Aid",
|
| 214 |
description=(
|
| 215 |
"1. Transcribes English speech using Wav2Vec2 (or takes English text).\n"
|
| 216 |
+
"2. Translates to Spanish, Chinese, or Japanese (via Helsinki-NLP models).\n"
|
| 217 |
+
"3. Synthesizes speech:\n"
|
| 218 |
+
" - Spanish -> facebook/mms-tts-spa (VITS)\n"
|
| 219 |
+
" - Chinese & Japanese -> microsoft/speecht5_tts (SpeechT5)\n\n"
|
| 220 |
+
"Note: SpeechT5 is not officially trained for Japanese, so results may vary.\n"
|
| 221 |
+
"You can also try inputting short, clear audio for best ASR results."
|
| 222 |
),
|
| 223 |
allow_flagging="never"
|
| 224 |
)
|
| 225 |
|
| 226 |
if __name__ == "__main__":
|
| 227 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|