File size: 5,516 Bytes
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os, torch
from typing import List, Tuple, Optional, Union, Dict

from .ebc import _ebc, EBC
from .clip_ebc import _clip_ebc, CLIP_EBC


def get_model(
    model_info_path: str,
    model_name: Optional[str] = None,
    block_size: Optional[int] = None,
    bins: Optional[List[Tuple[float, float]]] = None,
    bin_centers: Optional[List[float]] = None,
    zero_inflated: Optional[bool] = True,
    # parameters for CLIP_EBC
    clip_weight_name: Optional[str] = None,
    num_vpt: Optional[int] = None,
    vpt_drop: Optional[float] = None,
    input_size: Optional[int] = None,
    adapter: bool = False,
    adapter_reduction: Optional[int] = None,
    lora: bool = False,
    lora_rank: Optional[int] = None,
    lora_alpha: Optional[int] = None,
    lora_dropout: Optional[float] = None,
    norm: str = "none",
    act: str = "none",
    text_prompts: Optional[List[str]] = None
) -> Union[EBC, CLIP_EBC]:
    if os.path.exists(model_info_path):
        model_info = torch.load(model_info_path, map_location="cpu", weights_only=False)        

        model_name = model_info["config"]["model_name"]
        block_size = model_info["config"]["block_size"]
        bins = model_info["config"]["bins"]
        bin_centers = model_info["config"]["bin_centers"]
        zero_inflated = model_info["config"]["zero_inflated"]

        clip_weight_name = model_info["config"].get("clip_weight_name", None)

        num_vpt = model_info["config"].get("num_vpt", None)
        vpt_drop = model_info["config"].get("vpt_drop", None)


        adapter = model_info["config"].get("adapter", False)
        adapter_reduction = model_info["config"].get("adapter_reduction", None)

        lora = model_info["config"].get("lora", False)
        lora_rank = model_info["config"].get("lora_rank", None)
        lora_alpha = model_info["config"].get("lora_alpha", None)
        lora_dropout = model_info["config"].get("lora_dropout", None)

        input_size = model_info["config"].get("input_size", None)
        text_prompts = model_info["config"].get("text_prompts", None)

        norm = model_info["config"].get("norm", "none")
        act = model_info["config"].get("act", "none")

        weights = model_info["weights"]

    else:
        assert model_name is not None, "model_name should be provided if model_info_path is not provided"
        assert block_size is not None, "block_size should be provided"
        assert bins is not None, "bins should be provided"
        assert bin_centers is not None, "bin_centers should be provided"
        weights = None

    if "ViT" in model_name:
        assert num_vpt is not None, f"num_vpt should be provided for ViT models, got {num_vpt}"
        assert vpt_drop is not None, f"vpt_drop should be provided for ViT models, got {vpt_drop}"

    if model_name.startswith("CLIP_") or model_name.startswith("CLIP-"):
        assert clip_weight_name is not None, f"clip_weight_name should be provided for CLIP models, got {clip_weight_name}"
        model = _clip_ebc(
            model_name=model_name[5:],
            weight_name=clip_weight_name,
            block_size=block_size,
            bins=bins,
            bin_centers=bin_centers,
            zero_inflated=zero_inflated,
            num_vpt=num_vpt,
            vpt_drop=vpt_drop,
            input_size=input_size,
            adapter=adapter,
            adapter_reduction=adapter_reduction,
            lora=lora,
            lora_rank=lora_rank,
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            text_prompts=text_prompts,
            norm=norm,
            act=act
        )
        model_config = {
            "model_name": model_name,
            "block_size": block_size,
            "bins": bins,
            "bin_centers": bin_centers,
            "zero_inflated": zero_inflated,
            "clip_weight_name": clip_weight_name,
            "num_vpt": num_vpt,
            "vpt_drop": vpt_drop,
            "input_size": input_size,
            "adapter": adapter,
            "adapter_reduction": adapter_reduction,
            "lora": lora,
            "lora_rank": lora_rank,
            "lora_alpha": lora_alpha,
            "lora_dropout": lora_dropout,
            "text_prompts": model.text_prompts,
            "norm": norm,
            "act": act
        }
    
    else:
        assert not adapter, "adapter for non-CLIP models is not implemented yet"
        assert not lora, "lora for non-CLIP models is not implemented yet"
        model = _ebc(
            model_name=model_name,
            block_size=block_size,
            bins=bins,
            bin_centers=bin_centers,
            zero_inflated=zero_inflated,
            num_vpt=num_vpt,
            vpt_drop=vpt_drop,
            input_size=input_size,
            norm=norm,
            act=act
        )
        model_config = {
            "model_name": model_name,
            "block_size": block_size,
            "bins": bins,
            "bin_centers": bin_centers,
            "zero_inflated": zero_inflated,
            "num_vpt": num_vpt,
            "vpt_drop": vpt_drop,
            "input_size": input_size,
            "norm": norm,
            "act": act
        }

    model.config = model_config
    model_info = {"config": model_config, "weights": weights}

    if weights is not None:
        model.load_state_dict(weights)

    if not os.path.exists(model_info_path):
        torch.save(model_info, model_info_path)
    
    return model


__all__ = ["get_model"]