File size: 20,905 Bytes
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import torch
from torch import nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF

from torch import Tensor
import spaces

import numpy as np
from PIL import Image
import gradio as gr
from matplotlib import cm
from huggingface_hub import hf_hub_download
from warnings import warn

from models import get_model


mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
alpha = 0.8
EPS = 1e-8
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


pretrained_datasets = {
    "ZIP-B": ["ShanghaiTech A", "ShanghaiTech B", "UCF-QNRF" "NWPU-Crowd"],
    "ZIP-S": ["ShanghaiTech A", "ShanghaiTech B", "UCF-QNRF"],
    "ZIP-T": ["ShanghaiTech A", "ShanghaiTech B", "UCF-QNRF"],
    "ZIP-N": ["ShanghaiTech A", "ShanghaiTech B", "UCF-QNRF"],
    "ZIP-P": ["ShanghaiTech A", "ShanghaiTech B", "UCF-QNRF"],
}

# -----------------------------
# Define the model architecture
# -----------------------------
def load_model(variant: str, dataset: str = "ShanghaiTech B", metric: str = "mae"):
    """ Load the model weights from the Hugging Face Hub."""
    global loaded_model
    # Build model

    model_info_path = hf_hub_download(
        repo_id=f"Yiming-M/{variant}",
        filename=f"checkpoints/{dataset}/best_{metric}.pth",
    )

    model = get_model(model_info_path=model_info_path)
    model.eval()
    loaded_model = model


def _calc_size(
    img_w: int,
    img_h: int,
    min_size: int,
    max_size: int,
    base: int = 32
):
    """
    This function generates a new size for an image while keeping the aspect ratio. The new size should be within the given range (min_size, max_size).

    Args:
        img_w (int): The width of the image.
        img_h (int): The height of the image.
        min_size (int): The minimum size of the edges of the image.
        max_size (int): The maximum size of the edges of the image.
        # base (int): The base number to which the new size should be a multiple of.
    """
    assert min_size % base == 0, f"min_size ({min_size}) must be a multiple of {base}"
    if max_size != float("inf"):
        assert max_size % base == 0, f"max_size ({max_size}) must be a multiple of {base} if provided"

    assert min_size <= max_size, f"min_size ({min_size}) must be less than or equal to max_size ({max_size})"

    aspect_ratios = (img_w / img_h, img_h / img_w)
    if min_size / max_size <= min(aspect_ratios) <= max(aspect_ratios) <= max_size / min_size:  # possible to resize and preserve the aspect ratio
        if min_size <= min(img_w, img_h) <= max(img_w, img_h) <= max_size:  # already within the range, no need to resize
            ratio = 1.
        elif min(img_w, img_h) < min_size:  # smaller than the minimum size, resize to the minimum size
            ratio = min_size / min(img_w, img_h)
        else:  # larger than the maximum size, resize to the maximum size
            ratio = max_size / max(img_w, img_h)

        new_w, new_h = int(round(img_w * ratio / base) * base), int(round(img_h * ratio / base) * base)
        new_w = max(min_size, min(max_size, new_w))
        new_h = max(min_size, min(max_size, new_h))
        return new_w, new_h

    else:  # impossible to resize and preserve the aspect ratio
        msg = f"Impossible to resize {img_w}x{img_h} image while preserving the aspect ratio to a size within the range ({min_size}, {max_size}). Will not limit the maximum size."
        warn(msg)
        return _calc_size(img_w, img_h, min_size, float("inf"), base)
    

# -----------------------------
# Preprocessing function
# -----------------------------
# Adjust the image transforms to match what your model expects.
def transform(image: Image.Image, dataset_name: str) -> Tensor:
    assert isinstance(image, Image.Image), "Input must be a PIL Image"
    image_tensor = TF.to_tensor(image)

    if dataset_name == "sha":
        min_size = 448
        max_size = float("inf")
    elif dataset_name == "shb":
        min_size = 448
        max_size = float("inf")
    elif dataset_name == "qnrf":
        min_size = 448
        max_size = 2048
    elif dataset_name == "nwpu":
        min_size = 448
        max_size = 3072

    image_height, image_width = image_tensor.shape[-2:]
    new_width, new_height = _calc_size(
        img_w=image_width,
        img_h=image_height,
        min_size=min_size,
        max_size=max_size,
        base=32
    )
    if new_height != image_height or new_width != image_width:
        image_tensor = TF.resize(image_tensor, size=(new_height, new_width), interpolation=TF.InterpolationMode.LANCZOS, antialias=True)

    image_tensor = TF.normalize(image_tensor, mean=mean, std=std)
    return image_tensor.unsqueeze(0)  # Add batch dimension


def _sliding_window_predict(
    model: nn.Module,
    image: Tensor,
    window_size: int,
    stride: int, 
    max_num_windows: int = 256
):
    assert len(image.shape) == 4, f"Image must be a 4D tensor (1, c, h, w), got {image.shape}"
    window_size = (int(window_size), int(window_size)) if isinstance(window_size, (int, float)) else window_size
    stride = (int(stride), int(stride)) if isinstance(stride, (int, float)) else stride
    window_size = tuple(window_size)
    stride = tuple(stride)
    assert isinstance(window_size, tuple) and len(window_size) == 2 and window_size[0] > 0 and window_size[1] > 0, f"Window size must be a positive integer tuple (h, w), got {window_size}"
    assert isinstance(stride, tuple) and len(stride) == 2 and stride[0] > 0 and stride[1] > 0, f"Stride must be a positive integer tuple (h, w), got {stride}"
    assert stride[0] <= window_size[0] and stride[1] <= window_size[1], f"Stride must be smaller than window size, got {stride} and {window_size}"

    image_height, image_width = image.shape[-2:]
    window_height, window_width = window_size
    assert image_height >= window_height and image_width >= window_width, f"Image size must be larger than window size, got image size {image.shape} and window size {window_size}"
    stride_height, stride_width = stride

    num_rows = int(np.ceil((image_height - window_height) / stride_height) + 1)
    num_cols = int(np.ceil((image_width - window_width) / stride_width) + 1)

    if hasattr(model, "block_size"):
        block_size = model.block_size
    elif hasattr(model, "module") and hasattr(model.module, "block_size"):
        block_size = model.module.block_size
    else:
        raise ValueError("Model must have block_size attribute")
    assert window_height % block_size == 0 and window_width % block_size == 0, f"Window size must be divisible by block size, got {window_size} and {block_size}"

    windows = []
    for i in range(num_rows):
        for j in range(num_cols):
            x_start, y_start = i * stride_height, j * stride_width
            x_end, y_end = x_start + window_height, y_start + window_width
            if x_end > image_height:
                x_start, x_end = image_height - window_height, image_height
            if y_end > image_width:
                y_start, y_end = image_width - window_width, image_width

            window = image[:, :, x_start:x_end, y_start:y_end]
            windows.append(window)

    windows = torch.cat(windows, dim=0).to(image.device)  # batched windows, shape: (num_windows, c, h, w)
    
    model.eval()
    pi_maps, lambda_maps = [], []
    for i in range(0, len(windows), max_num_windows):
        with torch.no_grad():
            image_feats = model.backbone(windows[i: min(i + max_num_windows, len(windows))])
            pi_image_feats, lambda_image_feats = model.pi_head(image_feats), model.lambda_head(image_feats)
            pi_image_feats = F.normalize(pi_image_feats.permute(0, 2, 3, 1), p=2, dim=-1)  # shape (B, H, W, C)
            lambda_image_feats = F.normalize(lambda_image_feats.permute(0, 2, 3, 1), p=2, dim=-1)  # shape (B, H, W, C)

            pi_text_feats, lambda_text_feats = model.pi_text_feats, model.lambda_text_feats
            pi_logit_scale, lambda_logit_scale = model.pi_logit_scale.exp(), model.lambda_logit_scale.exp()

            pi_logit_map = pi_logit_scale * pi_image_feats @ pi_text_feats.t()  # (B, H, W, 2), logits per image
            lambda_logit_map = lambda_logit_scale * lambda_image_feats @ lambda_text_feats.t()  # (B, H, W, N - 1), logits per image

            pi_logit_map =  pi_logit_map.permute(0, 3, 1, 2)  # (B, 2, H, W)
            lambda_logit_map = lambda_logit_map.permute(0, 3, 1, 2)  # (B, N - 1, H, W)

            lambda_map = (lambda_logit_map.softmax(dim=1) * model.bin_centers[:, 1:]).sum(dim=1, keepdim=True)  # (B, 1, H, W)
            pi_map = pi_logit_map.softmax(dim=1)[:, 0:1]  # (B, 1, H, W)

            pi_maps.append(pi_map.cpu().numpy())
            lambda_maps.append(lambda_map.cpu().numpy())

    # assemble the density map
    pi_maps = np.concatenate(pi_maps, axis=0)  # shape: (num_windows, 1, H, W)
    lambda_maps = np.concatenate(lambda_maps, axis=0)  # shape: (num_windows, 1, H, W)
    assert pi_maps.shape == lambda_maps.shape, f"pi_maps and lambda_maps must have the same shape, got {pi_maps.shape} and {lambda_maps.shape}"

    pi_map = np.zeros((pi_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32)
    lambda_map = np.zeros((lambda_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32)
    count_map = np.zeros((pi_maps.shape[1], image_height // block_size, image_width // block_size), dtype=np.float32)
    idx = 0
    for i in range(num_rows):
        for j in range(num_cols):
            x_start, y_start = i * stride_height, j * stride_width
            x_end, y_end = x_start + window_height, y_start + window_width
            if x_end > image_height:
                x_start, x_end = image_height - window_height, image_height
            if y_end > image_width:
                y_start, y_end = image_width - window_width, image_width

            pi_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += pi_maps[idx, :, :, :]
            lambda_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += lambda_maps[idx, :, :, :]
            count_map[:, (x_start // block_size): (x_end // block_size), (y_start // block_size): (y_end // block_size)] += 1.
            idx += 1

    # average the density map
    pi_map /= count_map
    lambda_map /= count_map
    
    # convert to Tensor and reshape
    pi_map = torch.from_numpy(pi_map).unsqueeze(0)  # shape: (1, 1, H // block_size, W // block_size)
    lambda_map = torch.from_numpy(lambda_map).unsqueeze(0)  # shape: (1, 1, H // block_size, W // block_size)
    return pi_map, lambda_map


# -----------------------------
# Inference function
# -----------------------------
@spaces.GPU(duration=120)
def predict(image: Image.Image, variant: str, dataset: str, metric: str):
    """
    Given an input image, preprocess it, run the model to obtain a density map,
    compute the total crowd count, and prepare the density map for display.
    """
    global loaded_model

    if loaded_model is None:

        if dataset == "ShanghaiTech A":
            dataset_name = "sha"
        elif dataset == "ShanghaiTech B":
            dataset_name = "shb"
        elif dataset == "UCF-QNRF":
            dataset_name = "qnrf"
        elif dataset == "NWPU-Crowd":
            dataset_name = "nwpu"
        
        weight_path = f"Yiming-M/{variant}/checkpoints/{dataset_name}/best_{metric}.pth"
        load_model(weight_path)

    loaded_model.to(device)

    # Preprocess the image
    input_width, input_height = image.size
    image_tensor = transform(image, dataset_name).to(device)  # shape: (1, 3, H, W)

    input_size = loaded_model.input_size
    image_height, image_width = image_tensor.shape[-2:]
    aspect_ratio = image_width / image_height
    if image_height < input_size:
        new_height = input_size
        new_width = int(new_height * aspect_ratio)
        image_tensor = F.interpolate(image_tensor, size=(new_height, new_width), mode="bicubic", align_corners=False, antialias=True)
        image_height, image_width = new_height, new_width
    if image_width < input_size:
        new_width = input_size
        new_height = int(new_width / aspect_ratio)
        image_tensor = F.interpolate(image_tensor, size=(new_height, new_width), mode="bicubic", align_corners=False, antialias=True)
        image_height, image_width = new_height, new_width
    
    with torch.no_grad():
        if hasattr(loaded_model, "num_vpt") and loaded_model.num_vpt > 0:  # For ViT models, use sliding window prediction
            # For ViT models with VPT
            pi_map, lambda_map = _sliding_window_predict(
                model=loaded_model,
                image=image_tensor,
                window_size=input_size,
                stride=input_size
            )
        
        elif hasattr(loaded_model, "pi_text_feats") and hasattr(loaded_model, "lambda_text_feats") and loaded_model.pi_text_feats is not None and loaded_model.lambda_text_feats is not None:  # For other CLIP-based models
            image_feats = loaded_model.backbone(image_tensor)
            # image_feats = F.normalize(image_feats.permute(0, 2, 3, 1), p=2, dim=-1)  # shape (B, H, W, C)
            pi_image_feats, lambda_image_feats = loaded_model.pi_head(image_feats), loaded_model.lambda_head(image_feats)
            pi_image_feats = F.normalize(pi_image_feats.permute(0, 2, 3, 1), p=2, dim=-1)  # shape (B, H, W, C)
            lambda_image_feats = F.normalize(lambda_image_feats.permute(0, 2, 3, 1), p=2, dim=-1)  # shape (B, H, W, C)

            pi_text_feats, lambda_text_feats = loaded_model.pi_text_feats, loaded_model.lambda_text_feats
            pi_logit_scale, lambda_logit_scale = loaded_model.pi_logit_scale.exp(), loaded_model.lambda_logit_scale.exp()

            pi_logit_map = pi_logit_scale * pi_image_feats @ pi_text_feats.t()  # (B, H, W, 2), logits per image
            lambda_logit_map = lambda_logit_scale * lambda_image_feats @ lambda_text_feats.t()  # (B, H, W, N - 1), logits per image

            pi_logit_map =  pi_logit_map.permute(0, 3, 1, 2)  # (B, 2, H, W)
            lambda_logit_map = lambda_logit_map.permute(0, 3, 1, 2)  # (B, N - 1, H, W)

            lambda_map = (lambda_logit_map.softmax(dim=1) * loaded_model.bin_centers[:, 1:]).sum(dim=1, keepdim=True)  # (B, 1, H, W)
            pi_map = pi_logit_map.softmax(dim=1)[:, 0:1]  # (B, 1, H, W)
        
        else: # For non-CLIP models
            x = loaded_model.backbone(image_tensor)
            logit_pi_map = loaded_model.pi_head(x)  # shape: (B, 2, H, W)
            logit_map = loaded_model.bin_head(x)  # shape: (B, C, H, W)
            lambda_map= (logit_map.softmax(dim=1) * loaded_model.bin_centers[:, 1:]).sum(dim=1, keepdim=True)  # shape: (B, 1, H, W)
            pi_map = logit_pi_map.softmax(dim=1)[:, 0:1]  # shape: (B, 1, H, W)

        
        den_map = (1.0 - pi_map) * lambda_map  # shape: (B, 1, H, W)
        count = den_map.sum().item()

        strucrual_zero_map = F.interpolate(
            pi_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True
        ).cpu().squeeze().numpy()

        lambda_map = F.interpolate(
            lambda_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True
        ).cpu().squeeze().numpy()

        den_map = F.interpolate(
            den_map, size=(input_height, input_width), mode="bilinear", align_corners=False, antialias=True
        ).cpu().squeeze().numpy()
    
    sampling_zero_map = (1.0 - strucrual_zero_map) * np.exp(-lambda_map)
    complete_zero_map = strucrual_zero_map + sampling_zero_map

    # Normalize maps for display purposes
    def normalize_map(x: np.ndarray) -> np.ndarray:
        """ Normalize the map to [0, 1] range for visualization. """
        x_min = np.min(x)
        x_max = np.max(x)
        if x_max - x_min < EPS:
            return np.zeros_like(x)
        return (x - x_min) / (x_max - x_min + EPS)
    
    strucrual_zero_map = normalize_map(strucrual_zero_map)
    sampling_zero_map = normalize_map(sampling_zero_map)
    lambda_map = normalize_map(lambda_map)
    den_map = normalize_map(den_map)
    complete_zero_map = normalize_map(complete_zero_map)
    
    # Apply a colormap (e.g., 'jet') to get an RGBA image
    colormap = cm.get_cmap("jet")

    # The colormap returns values in [0,1]. Scale to [0,255] and convert to uint8.
    den_map = (colormap(den_map) * 255).astype(np.uint8)
    strucrual_zero_map = (colormap(strucrual_zero_map) * 255).astype(np.uint8)
    sampling_zero_map = (colormap(sampling_zero_map) * 255).astype(np.uint8)
    lambda_map = (colormap(lambda_map) * 255).astype(np.uint8)
    complete_zero_map = (colormap(complete_zero_map) * 255).astype(np.uint8)

    # Convert to PIL images
    den_map = Image.fromarray(den_map).convert("RGBA")
    strucrual_zero_map = Image.fromarray(strucrual_zero_map).convert("RGBA")
    sampling_zero_map = Image.fromarray(sampling_zero_map).convert("RGBA")
    lambda_map = Image.fromarray(lambda_map).convert("RGBA")
    complete_zero_map = Image.fromarray(complete_zero_map).convert("RGBA")
    
    # Ensure the original image is in RGBA format.
    image_rgba = image.convert("RGBA")

    den_map = Image.blend(image_rgba, den_map, alpha=alpha)
    strucrual_zero_map = Image.blend(image_rgba, strucrual_zero_map, alpha=alpha)
    sampling_zero_map = Image.blend(image_rgba, sampling_zero_map, alpha=alpha)
    lambda_map = Image.blend(image_rgba, lambda_map, alpha=alpha)
    complete_zero_map = Image.blend(image_rgba, complete_zero_map, alpha=alpha)
    
    return image, strucrual_zero_map, sampling_zero_map, complete_zero_map, lambda_map, den_map, f"Predicted Count: {count:.2f}"


# -----------------------------
# Build Gradio Interface using Blocks for a two-column layout
# -----------------------------
with gr.Blocks() as demo:
    gr.Markdown("# Crowd Counting by ZIP")
    gr.Markdown("Upload an image or select an example below to see the predicted crowd density map and total count.")

    with gr.Row():
        with gr.Column():
            # Dropdown for model variant
            variant_dropdown = gr.Dropdown(
                choices=list(pretrained_datasets.keys()),
                value="ZIP-B",
                label="Select Model Variant"
            )

            # Dropdown for pretrained dataset, dynamically updated based on variant
            dataset_dropdown = gr.Dropdown(
                choices=pretrained_datasets["ZIP-B"],
                value=pretrained_datasets["ZIP-B"][0],
                label="Select Pretrained Dataset"
            )

            # Dropdown for metric, always the same choices
            metric_dropdown = gr.Dropdown(
                choices=["mae", "rmse", "nae"],
                value="mae",
                label="Select Best Metric"
            )

            # Update dataset choices when variant changes
            def update_dataset(variant):
                choices = pretrained_datasets[variant]
                return gr.Dropdown.update(
                    choices=choices,
                    value=choices[0]
                )

            variant_dropdown.change(
                fn=update_dataset,
                inputs=variant_dropdown,
                outputs=dataset_dropdown
            )
            input_img = gr.Image(label="Input Image", sources=["upload", "clipboard"], type="pil")
            submit_btn = gr.Button("Predict")
    
        with gr.Column():
            output_den_map = gr.Image(label="Predicted Density Map", type="pil")
            output_structural_zero_map = gr.Image(label="Structural Zero Map", type="pil")
            output_sampling_zero_map = gr.Image(label="Sampling Zero Map", type="pil")
            output_lambda_map = gr.Image(label="Lambda Map", type="pil")
            output_complete_zero_map = gr.Image(label="Complete Zero Map", type="pil")
            
            output_text = gr.Textbox(label="Total Count")

    submit_btn.click(
        fn=predict,
        inputs=[input_img, variant_dropdown, dataset_dropdown, metric_dropdown],
        outputs=[input_img, output_structural_zero_map, output_sampling_zero_map, output_complete_zero_map, output_lambda_map, output_den_map, output_text]
    )

    gr.Examples(
        examples=[
            ["example1.jpg"],
            ["example2.jpg"],
            ["example3.jpg"],
            ["example4.jpg"],
            ["example5.jpg"],
            ["example6.jpg"],
            ["example7.jpg"],
            ["example8.jpg"],
            ["example9.jpg"],
            ["example10.jpg"],
            ["example11.jpg"],
            ["example12.jpg"]
        ],
        inputs=input_img,
        label="Try an example"
    )

demo.launch()