File size: 12,009 Bytes
a7dedf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from timm import create_model
from torch import nn, Tensor
from typing import Optional
from functools import partial

from ..utils import _get_activation, _get_norm_layer, ConvUpsample, ConvDownsample
from ..utils import LightConvUpsample, LightConvDownsample, LighterConvUpsample, LighterConvDownsample
from ..utils import ConvRefine, LightConvRefine, LighterConvRefine

regular_models = [
    "resnet18", "resnet34", "resnet50", "resnet101", "resnet152",
    "convnext_nano", "convnext_tiny", "convnext_small", "convnext_base", 
    "mobilenetv4_conv_large",
]

heavy_models = [
    "convnext_large", "convnext_xlarge", "convnext_xxlarge",
]

light_models = [
    "mobilenetv1_100", "mobilenetv1_125",
    "mobilenetv2_100", "mobilenetv2_140",
    "mobilenetv3_large_100", 
    "mobilenetv4_conv_medium", 

]

lighter_models = [
    "mobilenetv2_050", 
    "mobilenetv3_small_050", "mobilenetv3_small_075", "mobilenetv3_small_100", 
    "mobilenetv4_conv_small_050", "mobilenetv4_conv_small"
]

supported_models = regular_models + heavy_models + light_models + lighter_models


refiner_in_channels = {
    # ResNet
    "resnet18": 512,
    "resnet34": 512,
    "resnet50": 2048,
    "resnet101": 2048,
    "resnet152": 2048,
    # ConvNeXt
    "convnext_nano": 640,
    "convnext_tiny": 768,
    "convnext_small": 768,
    "convnext_base": 1024,
    "convnext_large": 1536,
    "convnext_xlarge": 2048,
    "convnext_xxlarge": 3072,
    # MobileNet V1
    "mobilenetv1_100": 1024,
    "mobilenetv1_125": 1280,
    # MobileNet V2
    "mobilenetv2_050": 160,
    "mobilenetv2_100": 320,
    "mobilenetv2_140": 448,
    # MobileNet V3
    "mobilenetv3_small_050": 288,
    "mobilenetv3_small_075": 432,
    "mobilenetv3_small_100": 576,
    "mobilenetv3_large_100": 960,
    # MobileNet V4
    "mobilenetv4_conv_small_050": 480,
    "mobilenetv4_conv_small": 960,
    "mobilenetv4_conv_medium": 960,
    "mobilenetv4_conv_large": 960,
}


refiner_out_channels = {
    # ResNet
    "resnet18": 512,
    "resnet34": 512,
    "resnet50": 2048,
    "resnet101": 2048,
    "resnet152": 2048,
    # ConvNeXt
    "convnext_nano": 640,
    "convnext_tiny": 768,
    "convnext_small": 768,
    "convnext_base": 1024,
    "convnext_large": 1536,
    "convnext_xlarge": 2048,
    "convnext_xxlarge": 3072,
    # MobileNet V1
    "mobilenetv1_100": 512,
    "mobilenetv1_125": 640,
    # MobileNet V2
    "mobilenetv2_050": 160,
    "mobilenetv2_100": 320,
    "mobilenetv2_140": 448,
    # MobileNet V3
    "mobilenetv3_small_050": 288,
    "mobilenetv3_small_075": 432,
    "mobilenetv3_small_100": 576,
    "mobilenetv3_large_100": 480,
    # MobileNet V4
    "mobilenetv4_conv_small_050": 480,
    "mobilenetv4_conv_small": 960,
    "mobilenetv4_conv_medium": 960,
    "mobilenetv4_conv_large": 960,
}


groups = {
    # ResNet
    "resnet18": 1,
    "resnet34": 1,
    "resnet50": refiner_in_channels["resnet50"] // 512,
    "resnet101": refiner_in_channels["resnet101"] // 512,
    "resnet152": refiner_in_channels["resnet152"] // 512,
    # ConvNeXt
    "convnext_nano": 8,
    "convnext_tiny": 8,
    "convnext_small": 8,
    "convnext_base": 8,
    "convnext_large": refiner_in_channels["convnext_large"] // 512,
    "convnext_xlarge": refiner_in_channels["convnext_xlarge"] // 512,
    "convnext_xxlarge": refiner_in_channels["convnext_xxlarge"] // 512,
    # MobileNet V1
    "mobilenetv1_100": None,
    "mobilenetv1_125": None,
    # MobileNet V2
    "mobilenetv2_050": None,
    "mobilenetv2_100": None,
    "mobilenetv2_140": None,
    # MobileNet V3
    "mobilenetv3_small_050": None,
    "mobilenetv3_small_075": None,
    "mobilenetv3_small_100": None,
    "mobilenetv3_large_100": None,
    # MobileNet V4
    "mobilenetv4_conv_small_050": None,
    "mobilenetv4_conv_small": None,
    "mobilenetv4_conv_medium": None,
    "mobilenetv4_conv_large": 1,
}


class TIMMModel(nn.Module):
    def __init__(
        self,
        model_name: str,
        block_size: Optional[int] = None,
        norm: str = "none",
        act: str = "none"
    ) -> None:
        super().__init__()
        assert model_name in supported_models, f"Backbone {model_name} not supported. Supported models are {supported_models}"
        assert block_size is None or block_size in [8, 16, 32], f"Block size should be one of [8, 16, 32], but got {block_size}."
        self.model_name = model_name
        self.encoder = create_model(model_name, pretrained=True, features_only=True, out_indices=[-1])
        self.encoder_channels = self.encoder.feature_info.channels()[-1]
        self.encoder_reduction = self.encoder.feature_info.reduction()[-1]
        self.block_size = block_size if block_size is not None else self.encoder_reduction

        if model_name in lighter_models:
            upsample_block = LighterConvUpsample
            downsample_block = LighterConvDownsample
            decoder_block = LighterConvRefine
        elif model_name in light_models:
            upsample_block = LightConvUpsample
            downsample_block = LightConvDownsample
            decoder_block = LightConvRefine
        else:
            upsample_block = partial(ConvUpsample, groups=groups[model_name])
            downsample_block = partial(ConvDownsample, groups=groups[model_name])
            decoder_block = partial(ConvRefine, groups=groups[model_name])

        
        if norm == "bn":
            norm_layer = nn.BatchNorm2d
        elif norm == "ln":
            norm_layer = nn.LayerNorm
        else:
            norm_layer = _get_norm_layer(self.encoder)
        
        if act == "relu":
            activation = nn.ReLU(inplace=True)
        elif act == "gelu":
            activation = nn.GELU()
        else:
            activation = _get_activation(self.encoder)
        
        if self.block_size > self.encoder_reduction:
            if self.block_size > self.encoder_reduction * 2:
                assert self.block_size == self.encoder_reduction * 4, f"Block size {self.block_size} is not supported for model {self.model_name}. Supported block sizes are {self.encoder_reduction}, {self.encoder_reduction * 2}, and {self.encoder_reduction * 4}."
                self.refiner = nn.Sequential(
                    downsample_block(
                        in_channels=self.encoder_channels,
                        out_channels=refiner_in_channels[self.model_name],
                        norm_layer=norm_layer,
                        activation=activation,
                    ),
                    downsample_block(
                        in_channels=refiner_in_channels[self.model_name],
                        out_channels=refiner_out_channels[self.model_name],
                        norm_layer=norm_layer,
                        activation=activation,
                    )
                )
            else:
                assert self.block_size == self.encoder_reduction * 2, f"Block size {self.block_size} is not supported for model {self.model_name}. Supported block sizes are {self.encoder_reduction}, {self.encoder_reduction * 2}, and {self.encoder_reduction * 4}."
                self.refiner = downsample_block(
                    in_channels=self.encoder_channels,
                    out_channels=refiner_out_channels[self.model_name],
                    norm_layer=norm_layer,
                    activation=activation,
                )

            self.refiner_channels = refiner_out_channels[self.model_name]
        
        elif self.block_size < self.encoder_reduction:
            if self.block_size < self.encoder_reduction // 2:
                assert self.block_size == self.encoder_reduction // 4, f"Block size {self.block_size} is not supported for model {self.model_name}. Supported block sizes are {self.encoder_reduction}, {self.encoder_reduction // 2}, and {self.encoder_reduction // 4}."
                self.refiner = nn.Sequential(
                    upsample_block(
                        in_channels=self.encoder_channels,
                        out_channels=refiner_in_channels[self.model_name],
                        norm_layer=norm_layer,
                        activation=activation,
                    ),
                    upsample_block(
                        in_channels=refiner_in_channels[self.model_name],
                        out_channels=refiner_out_channels[self.model_name],
                        norm_layer=norm_layer,
                        activation=activation,
                    )
                )
            else:
                assert self.block_size == self.encoder_reduction // 2, f"Block size {self.block_size} is not supported for model {self.model_name}. Supported block sizes are {self.encoder_reduction}, {self.encoder_reduction // 2}, and {self.encoder_reduction // 4}."
                self.refiner = upsample_block(
                    in_channels=self.encoder_channels,
                    out_channels=refiner_out_channels[self.model_name],
                    norm_layer=norm_layer,
                    activation=activation,
                )
        
            self.refiner_channels = refiner_out_channels[self.model_name]
        
        else:
            self.refiner = nn.Identity()
            self.refiner_channels = self.encoder_channels

        self.refiner_reduction = self.block_size
    
        if self.refiner_channels <= 256:
            self.decoder = nn.Identity()
            self.decoder_channels = self.refiner_channels
        elif self.refiner_channels <= 512:
            self.decoder = decoder_block(
                in_channels=self.refiner_channels,
                out_channels=self.refiner_channels // 2,
                norm_layer=norm_layer,
                activation=activation,
            )
            self.decoder_channels = self.refiner_channels // 2
        elif self.refiner_channels <= 1024:
            self.decoder = nn.Sequential(
                decoder_block(
                    in_channels=self.refiner_channels,
                    out_channels=self.refiner_channels // 2,
                    norm_layer=norm_layer,
                    activation=activation,
                ),
                decoder_block(
                    in_channels=self.refiner_channels // 2,
                    out_channels=self.refiner_channels // 4,
                    norm_layer=norm_layer,
                    activation=activation,
                ),
            )
            self.decoder_channels = self.refiner_channels // 4
        else:
            self.decoder = nn.Sequential(
                decoder_block(
                    in_channels=self.refiner_channels,
                    out_channels=self.refiner_channels // 2,
                    norm_layer=norm_layer,
                    activation=activation,
                ),
                decoder_block(
                    in_channels=self.refiner_channels // 2,
                    out_channels=self.refiner_channels // 4,
                    norm_layer=norm_layer,
                    activation=activation,
                ),
                decoder_block(
                    in_channels=self.refiner_channels // 4,
                    out_channels=self.refiner_channels // 8,
                    norm_layer=norm_layer,
                    activation=activation,
                ),
            )
            self.decoder_channels = self.refiner_channels // 8

        self.decoder_reduction = self.refiner_reduction

    def encode(self, x: Tensor) -> Tensor:
        return self.encoder(x)[0]
    
    def refine(self, x: Tensor) -> Tensor:
        return self.refiner(x)
    
    def decode(self, x: Tensor) -> Tensor:
        return self.decoder(x)

    def forward(self, x: Tensor) -> Tensor:
        x = self.encode(x)
        x = self.refine(x)
        x = self.decode(x)
        return x


def _timm_model(model_name: str, block_size: Optional[int] = None, norm: str = "none", act: str = "none") -> TIMMModel:
    return TIMMModel(model_name, block_size=block_size, norm=norm, act=act)