Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,773 Bytes
a7dedf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
from torch import nn, Tensor
from torch.hub import load_state_dict_from_url
from typing import Optional
from .utils import make_vgg_layers, vgg_cfgs, vgg_urls
from ..utils import _init_weights, _get_norm_layer, _get_activation
from ..utils import ConvDownsample, ConvUpsample
vgg_models = [
"vgg11", "vgg11_bn",
"vgg13", "vgg13_bn",
"vgg16", "vgg16_bn",
"vgg19", "vgg19_bn",
]
decoder_cfg = [512, 256, 128]
class VGGEncoder(nn.Module):
def __init__(
self,
model_name: str,
block_size: Optional[int] = None,
norm: str = "none",
act: str = "none",
) -> None:
super().__init__()
assert model_name in vgg_models, f"Model name should be one of {vgg_models}, but got {model_name}."
assert block_size is None or block_size in [8, 16, 32], f"Block size should be one of [8, 16, 32], but got {block_size}."
self.model_name = model_name
if model_name == "vgg11":
self.encoder = vgg11()
elif model_name == "vgg11_bn":
self.encoder = vgg11_bn()
elif model_name == "vgg13":
self.encoder = vgg13()
elif model_name == "vgg13_bn":
self.encoder = vgg13_bn()
elif model_name == "vgg16":
self.encoder = vgg16()
elif model_name == "vgg16_bn":
self.encoder = vgg16_bn()
elif model_name == "vgg19":
self.encoder = vgg19()
else: # model_name == "vgg19_bn"
self.encoder = vgg19_bn()
self.encoder_channels = 512
self.encoder_reduction = 16
self.block_size = block_size if block_size is not None else self.encoder_reduction
if norm == "bn":
norm_layer = nn.BatchNorm2d
elif norm == "ln":
norm_layer = nn.LayerNorm
else:
norm_layer = _get_norm_layer(self.encoder)
if act == "relu":
activation = nn.ReLU(inplace=True)
elif act == "gelu":
activation = nn.GELU()
else:
activation = _get_activation(self.encoder)
if self.encoder_reduction >= self.block_size: # 8, 16
self.refiner = ConvUpsample(
in_channels=self.encoder_channels,
out_channels=self.encoder_channels,
scale_factor=self.encoder_reduction // self.block_size,
norm_layer=norm_layer,
activation=activation,
)
else: # 32
self.refiner = ConvDownsample(
in_channels=self.encoder_channels,
out_channels=self.encoder_channels,
norm_layer=norm_layer,
activation=activation,
)
self.refiner_channels = self.encoder_channels
self.refiner_reduction = self.block_size
self.decoder = nn.Identity()
self.decoder_channels = self.encoder_channels
self.decoder_reduction = self.refiner_reduction
def encode(self, x: Tensor) -> Tensor:
return self.encoder(x)
def refine(self, x: Tensor) -> Tensor:
return self.refiner(x)
def decode(self, x: Tensor) -> Tensor:
return self.decoder(x)
def forward(self, x: Tensor) -> Tensor:
x = self.encode(x)
x = self.refine(x)
x = self.decode(x)
return x
class VGGEncoderDecoder(nn.Module):
def __init__(
self,
model_name: str,
block_size: Optional[int] = None,
norm: str = "none",
act: str = "none",
) -> None:
super().__init__()
assert model_name in vgg_models, f"Model name should be one of {vgg_models}, but got {model_name}."
assert block_size is None or block_size in [8, 16, 32], f"Block size should be one of [8, 16, 32], but got {block_size}."
self.model_name = model_name
if model_name == "vgg11":
encoder = vgg11()
elif model_name == "vgg11_bn":
encoder = vgg11_bn()
elif model_name == "vgg13":
encoder = vgg13()
elif model_name == "vgg13_bn":
encoder = vgg13_bn()
elif model_name == "vgg16":
encoder = vgg16()
elif model_name == "vgg16_bn":
encoder = vgg16_bn()
elif model_name == "vgg19":
encoder = vgg19()
else: # model_name == "vgg19_bn"
encoder = vgg19_bn()
encoder_channels = 512
encoder_reduction = 16
decoder = make_vgg_layers(decoder_cfg, in_channels=encoder_channels, batch_norm="bn" in model_name, dilation=1)
decoder.apply(_init_weights)
if norm == "bn":
norm_layer = nn.BatchNorm2d
elif norm == "ln":
norm_layer = nn.LayerNorm
else:
norm_layer = _get_norm_layer(encoder)
if act == "relu":
activation = nn.ReLU(inplace=True)
elif act == "gelu":
activation = nn.GELU()
else:
activation = _get_activation(encoder)
self.encoder = nn.Sequential(encoder, decoder)
self.encoder_channels = decoder_cfg[-1]
self.encoder_reduction = encoder_reduction
self.block_size = block_size if block_size is not None else self.encoder_reduction
if self.encoder_reduction >= self.block_size:
self.refiner = ConvUpsample(
in_channels=self.encoder_channels,
out_channels=self.encoder_channels,
scale_factor=self.encoder_reduction // self.block_size,
norm_layer=norm_layer,
activation=activation,
)
else:
self.refiner = ConvDownsample(
in_channels=self.encoder_channels,
out_channels=self.encoder_channels,
norm_layer=norm_layer,
activation=activation,
)
self.refiner_channels = self.encoder_channels
self.refiner_reduction = self.block_size
self.decoder = nn.Identity()
self.decoder_channels = self.refiner_channels
self.decoder_reduction = self.refiner_reduction
def encode(self, x: Tensor) -> Tensor:
return self.encoder(x)
def refine(self, x: Tensor) -> Tensor:
return self.refiner(x)
def decode(self, x: Tensor) -> Tensor:
return self.decoder(x)
def forward(self, x: Tensor) -> Tensor:
x = self.encode(x)
x = self.refine(x)
x = self.decode(x)
return x
class VGG(nn.Module):
def __init__(
self,
features: nn.Module,
) -> None:
super().__init__()
self.features = features
def forward(self, x: Tensor) -> Tensor:
x = self.features(x)
return x
def vgg11() -> VGG:
model = VGG(make_vgg_layers(vgg_cfgs["A"]))
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg11"]), strict=False)
return model
def vgg11_bn() -> VGG:
model = VGG(make_vgg_layers(vgg_cfgs["A"], batch_norm=True))
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg11_bn"]), strict=False)
return model
def vgg13() -> VGG:
model = VGG(make_vgg_layers(vgg_cfgs["B"]))
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg13"]), strict=False)
return model
def vgg13_bn() -> VGG:
model = VGG(make_vgg_layers(vgg_cfgs["B"], batch_norm=True))
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg13_bn"]), strict=False)
return model
def vgg16() -> VGG:
model = VGG(make_vgg_layers(vgg_cfgs["D"]))
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg16"]), strict=False)
return model
def vgg16_bn() -> VGG:
model = VGG(make_vgg_layers(vgg_cfgs["D"], batch_norm=True))
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg16_bn"]), strict=False)
return model
def vgg19() -> VGG:
model = VGG(make_vgg_layers(vgg_cfgs["E"]))
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg19"]), strict=False)
return model
def vgg19_bn() -> VGG:
model = VGG(make_vgg_layers(vgg_cfgs["E"], batch_norm=True))
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg19_bn"]), strict=False)
return model
def _vgg_encoder(model_name: str, block_size: Optional[int] = None, norm: str = "none", act: str = "none") -> VGGEncoder:
return VGGEncoder(model_name, block_size, norm=norm, act=act)
def _vgg_encoder_decoder(model_name: str, block_size: Optional[int] = None, norm: str = "none", act: str = "none") -> VGGEncoderDecoder:
return VGGEncoderDecoder(model_name, block_size, norm=norm, act=act)
|