Spaces:
Running
on
Zero
Running
on
Zero
| from torch import nn, Tensor | |
| import open_clip | |
| from peft import get_peft_model, LoraConfig | |
| from ..utils import ConvRefine, ConvUpsample, ConvAdapter | |
| from ..utils import _get_norm_layer, _get_activation | |
| mobileclip_names_and_weights = { | |
| "MobileCLIP-S1": ["datacompdr"], | |
| "MobileCLIP-S2": ["datacompdr"], | |
| } | |
| refiner_channels = { | |
| "MobileCLIP-S1": 1024, | |
| "MobileCLIP-S2": 1280, | |
| } | |
| refiner_groups = { | |
| "MobileCLIP-S1": 2, | |
| "MobileCLIP-S2": 2, | |
| } | |
| class MobileCLIP(nn.Module): | |
| def __init__( | |
| self, | |
| model_name: str, | |
| weight_name: str, | |
| block_size: int = 16, | |
| adapter: bool = False, | |
| adapter_reduction: int = 4, | |
| norm: str = "none", | |
| act: str = "none" | |
| ) -> None: | |
| super().__init__() | |
| assert model_name in mobileclip_names_and_weights, f"Model name should be one of {list(mobileclip_names_and_weights.keys())}, but got {model_name}." | |
| assert weight_name in mobileclip_names_and_weights[model_name], f"Pretrained should be one of {mobileclip_names_and_weights[model_name]}, but got {weight_name}." | |
| assert block_size in [32, 16, 8], f"block_size should be one of [32, 16, 8], got {block_size}" | |
| self.model_name, self.weight_name = model_name, weight_name | |
| self.block_size = block_size | |
| model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual | |
| self.adapter = adapter | |
| if adapter: | |
| for param in model.parameters(): | |
| param.requires_grad = False | |
| self.stem = model.trunk.stem | |
| self.stages = model.trunk.stages | |
| self.depth = len(model.trunk.stages) | |
| for idx, stage in enumerate(model.trunk.stages): | |
| if adapter: | |
| setattr(self, f"adapter{idx}", ConvAdapter( | |
| in_channels=stage.blocks[-1].mlp.fc2.out_channels, | |
| bottleneck_channels=stage.blocks[-1].mlp.fc2.out_channels // adapter_reduction, | |
| )) | |
| self.final_conv = model.trunk.final_conv | |
| self.in_features, self.out_features = model.trunk.head.fc.in_features, model.trunk.head.fc.out_features | |
| # refine_block = LightConvRefine if model_name == "MobileCLIP-S1" else ConvRefine | |
| # upsample_block = LightConvUpsample if model_name == "MobileCLIP-S1" else ConvUpsample | |
| if norm == "bn": | |
| norm_layer = nn.BatchNorm2d | |
| elif norm == "ln": | |
| norm_layer = nn.LayerNorm | |
| else: | |
| norm_layer = _get_norm_layer(model) | |
| if act == "relu": | |
| activation = nn.ReLU(inplace=True) | |
| elif act == "gelu": | |
| activation = nn.GELU() | |
| else: | |
| activation = _get_activation(model) | |
| if block_size == 32: | |
| self.refiner = ConvRefine( | |
| in_channels=self.in_features, | |
| out_channels=self.in_features, | |
| norm_layer=norm_layer, | |
| activation=activation, | |
| groups=refiner_groups[model_name], | |
| ) | |
| elif block_size == 16: | |
| self.refiner = ConvUpsample( | |
| in_channels=self.in_features, | |
| out_channels=self.in_features, | |
| norm_layer=norm_layer, | |
| activation=activation, | |
| groups=refiner_groups[self.model_name], | |
| ) | |
| else: # block_size == 8 | |
| self.refiner = nn.Sequential( | |
| ConvUpsample( | |
| in_channels=self.in_features, | |
| out_channels=self.in_features, | |
| norm_layer=norm_layer, | |
| activation=activation, | |
| groups=refiner_groups[self.model_name], | |
| ), | |
| ConvUpsample( | |
| in_channels=self.in_features, | |
| out_channels=self.in_features, | |
| norm_layer=norm_layer, | |
| activation=activation, | |
| groups=refiner_groups[self.model_name], | |
| ), | |
| ) | |
| def train(self, mode: bool = True): | |
| if self.adapter and mode: | |
| # training: | |
| self.stem.eval() | |
| for idx in range(self.depth): | |
| getattr(self, f"stage{idx}").eval() | |
| getattr(self, f"adapter{idx}").train() | |
| self.final_conv.eval() | |
| self.refiner.train() | |
| else: | |
| # evaluation: | |
| for module in self.children(): | |
| module.train(mode) | |
| def forward(self, x: Tensor) -> Tensor: | |
| x = self.stem(x) | |
| for idx in range(self.depth): | |
| x = self.stages[idx](x) | |
| if self.adapter: | |
| x = getattr(self, f"adapter{idx}")(x) | |
| x = self.final_conv(x) | |
| x = self.refiner(x) | |
| return x | |
| def _mobileclip( | |
| model_name: str, | |
| weight_name: str, | |
| block_size: int = 16, | |
| adapter: bool = False, | |
| adapter_reduction: int = 4, | |
| lora: bool = False, | |
| lora_rank: int = 16, | |
| lora_alpha: float = 32.0, | |
| lora_dropout: float = 0.1, | |
| norm: str = "none", | |
| act: str = "none" | |
| ) -> MobileCLIP: | |
| assert not (lora and adapter), "Lora and adapter cannot be used together." | |
| model = MobileCLIP( | |
| model_name=model_name, | |
| weight_name=weight_name, | |
| block_size=block_size, | |
| adapter=adapter, | |
| adapter_reduction=adapter_reduction, | |
| norm=norm, | |
| act=act | |
| ) | |
| if lora: | |
| target_modules = [] | |
| for name, module in model.named_modules(): | |
| if isinstance(module, (nn.Linear, nn.Conv2d)): | |
| target_modules.append(name) | |
| lora_config = LoraConfig( | |
| r=lora_rank, | |
| lora_alpha=lora_alpha, | |
| lora_dropout=lora_dropout, | |
| bias="none", | |
| target_modules=target_modules, | |
| ) | |
| model = get_peft_model(model, lora_config) | |
| # Unfreeze the BN layers | |
| for name, module in model.named_modules() and "refiner" not in name: | |
| if isinstance(module, nn.BatchNorm2d): | |
| module.requires_grad_(True) | |
| # Unfreeze refiner | |
| for name, module in model.named_modules(): | |
| if "refiner" in name: | |
| module.requires_grad_(True) | |
| return model |