Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch import nn, Tensor | |
import timm | |
from einops import rearrange | |
import torch.nn.functional as F | |
import math | |
from typing import Optional, Tuple | |
from ..utils import ConvUpsample, ConvDownsample, _get_activation, _get_norm_layer, ConvRefine | |
supported_vit_backbones = [ | |
# Tiny | |
"vit_tiny_patch16_224", "vit_tiny_patch16_384", | |
# Small | |
"vit_small_patch8_224", | |
"vit_small_patch16_224", "vit_small_patch16_384", | |
"vit_small_patch32_224", "vit_small_patch32_384", | |
# Base | |
"vit_base_patch8_224", | |
"vit_base_patch16_224", "vit_base_patch16_384", | |
"vit_base_patch32_224", "vit_base_patch32_384", | |
# Large | |
"vit_large_patch16_224", "vit_large_patch16_384", | |
"vit_large_patch32_224", "vit_large_patch32_384", | |
# Huge | |
"vit_huge_patch14_224", | |
] | |
refiner_channels = { | |
"vit_tiny_patch16_224": 192, | |
"vit_tiny_patch16_384": 192, | |
"vit_small_patch8_224": 384, | |
"vit_small_patch16_224": 384, | |
"vit_small_patch16_384": 384, | |
"vit_small_patch32_224": 384, | |
"vit_small_patch32_384": 384, | |
"vit_base_patch8_224": 768, | |
"vit_base_patch16_224": 768, | |
"vit_base_patch16_384": 768, | |
"vit_base_patch32_224": 768, | |
"vit_base_patch32_384": 768, | |
"vit_large_patch16_224": 1024, | |
"vit_large_patch16_384": 1024, | |
"vit_large_patch32_224": 1024, | |
"vit_large_patch32_384": 1024, | |
} | |
refiner_groups = { | |
"vit_tiny_patch16_224": 1, | |
"vit_tiny_patch16_384": 1, | |
"vit_small_patch8_224": 1, | |
"vit_small_patch16_224": 1, | |
"vit_small_patch16_384": 1, | |
"vit_small_patch32_224": 1, | |
"vit_small_patch32_384": 1, | |
"vit_base_patch8_224": 1, | |
"vit_base_patch16_224": 1, | |
"vit_base_patch16_384": 1, | |
"vit_base_patch32_224": 1, | |
"vit_base_patch32_384": 1, | |
"vit_large_patch16_224": 1, | |
"vit_large_patch16_384": 1, | |
"vit_large_patch32_224": 1, | |
"vit_large_patch32_384": 1, | |
} | |
class ViT(nn.Module): | |
def __init__( | |
self, | |
model_name: str, | |
block_size: Optional[int] = None, | |
num_vpt: int = 32, | |
vpt_drop: float = 0.0, | |
input_size: Optional[Tuple[int, int]] = None, | |
norm: str = "none", | |
act: str = "none" | |
) -> None: | |
super().__init__() | |
assert model_name in supported_vit_backbones, f"Model {model_name} not supported" | |
assert num_vpt >= 0, f"Number of VPT tokens should be greater than 0, but got {num_vpt}." | |
self.model_name = model_name | |
self.num_vpt = num_vpt | |
self.vpt_drop = vpt_drop | |
model = timm.create_model(model_name, pretrained=True) | |
self.input_size = input_size if input_size is not None else model.patch_embed.img_size | |
self.pretrain_size = model.patch_embed.img_size | |
self.patch_size = model.patch_embed.patch_size | |
if self.patch_size[0] in [8, 16, 32]: | |
assert block_size is None or block_size in [8, 16, 32], f"Block size should be one of [8, 16, 32], but got {block_size}." | |
else: # patch_size == 14 | |
assert block_size is None or block_size in [7, 14, 28], f"Block size should be one of [7, 14, 28], but got {block_size}." | |
self.num_layers = len(model.blocks) | |
self.embed_dim = model.cls_token.shape[-1] | |
if self.num_vpt > 0: # Use visual prompt tuning so freeze the backbone | |
for param in model.parameters(): | |
param.requires_grad = False | |
# Setup VPT tokens | |
val = math.sqrt(6. / float(3 * self.patch_size[0] + self.embed_dim)) | |
for idx in range(self.num_layers): | |
setattr(self, f"vpt_{idx}", nn.Parameter(torch.empty(self.num_vpt, self.embed_dim))) | |
nn.init.uniform_(getattr(self, f"vpt_{idx}"), -val, val) | |
setattr(self, f"vpt_drop_{idx}", nn.Dropout(self.vpt_drop)) | |
self.patch_embed = model.patch_embed | |
self.cls_token = model.cls_token | |
self.pos_embed = model.pos_embed | |
self.pos_drop = model.pos_drop | |
self.patch_drop = model.patch_drop | |
self.norm_pre = model.norm_pre | |
self.blocks = model.blocks | |
self.norm = model.norm | |
self.encoder_channels = self.embed_dim | |
self.encoder_reduction = self.patch_size[0] | |
self.block_size = block_size if block_size is not None else self.encoder_reduction | |
if norm == "bn": | |
norm_layer = nn.BatchNorm2d | |
elif norm == "ln": | |
norm_layer = nn.LayerNorm | |
else: | |
norm_layer = _get_norm_layer(model) | |
if act == "relu": | |
activation = nn.ReLU(inplace=True) | |
elif act == "gelu": | |
activation = nn.GELU() | |
else: | |
activation = _get_activation(model) | |
if self.block_size < self.encoder_reduction: | |
assert self.block_size == self.encoder_reduction // 2, f"Block size should be half of the encoder reduction, but got {self.block_size} and {self.encoder_reduction}." | |
self.refiner = ConvUpsample( | |
in_channels=self.encoder_channels, | |
out_channels=self.encoder_channels, | |
norm_layer=norm_layer, | |
activation=activation, | |
) | |
elif self.block_size > self.encoder_reduction: | |
assert self.block_size == self.encoder_reduction * 2, f"Block size should be double of the encoder reduction, but got {self.block_size} and {self.encoder_reduction}." | |
self.refiner = ConvDownsample( | |
in_channels=self.encoder_channels, | |
out_channels=self.encoder_channels, | |
norm_layer=norm_layer, | |
activation=activation, | |
) | |
else: | |
self.refiner = ConvRefine( | |
in_channels=self.encoder_channels, | |
out_channels=self.encoder_channels, | |
norm_layer=norm_layer, | |
activation=activation, | |
) | |
self.refiner_channels = self.encoder_channels | |
self.refiner_reduction = self.block_size | |
self.decoder = nn.Identity() | |
self.decoder_channels = self.refiner_channels | |
self.reduction = self.refiner_reduction | |
# Adjust the positional embedding to match the new input size | |
self._adjust_pos_embed() | |
def _adjust_pos_embed(self) -> Tensor: | |
""" | |
Adjust the positional embedding to match the spatial resolution of the feature map. | |
Args: | |
orig_h, orig_w: The original spatial resolution of the image. | |
new_h, new_w: The new spatial resolution of the image. | |
""" | |
self.pos_embed = nn.Parameter(self._interpolate_pos_embed(self.pretrain_size[0], self.pretrain_size[1], self.input_size[0], self.input_size[1]), requires_grad=self.num_vpt == 0) | |
def _interpolate_pos_embed(self, orig_h: int, orig_w: int, new_h: int, new_w: int) -> Tensor: | |
""" | |
Interpolate the positional embedding to match the spatial resolution of the feature map. | |
Args: | |
orig_h, orig_w: The original spatial resolution of the image. | |
new_h, new_w: The new spatial resolution of the image. | |
""" | |
if (orig_h, orig_w) == (new_h, new_w): | |
return self.pos_embed # (1, (h * w + 1), d) | |
orig_h_patches, orig_w_patches = orig_h // self.patch_size[0], orig_w // self.patch_size[1] | |
new_h_patches, new_w_patches = new_h // self.patch_size[0], new_w // self.patch_size[1] | |
class_pos_embed, patch_pos_embed = self.pos_embed[:, :1, :], self.pos_embed[:, 1:, :] | |
patch_pos_embed = rearrange(patch_pos_embed, "1 (h w) d -> 1 d h w", h=orig_h_patches, w=orig_w_patches) | |
patch_pos_embed = F.interpolate(patch_pos_embed, size=(new_h_patches, new_w_patches), mode="bicubic", antialias=True) | |
patch_pos_embed = rearrange(patch_pos_embed, "1 d h w -> 1 (h w) d") | |
pos_embed = torch.cat((class_pos_embed, patch_pos_embed), dim=1) | |
return pos_embed | |
def train(self, mode: bool = True): | |
if self.num_vpt > 0 and mode: | |
self.patch_embed.eval() | |
self.pos_drop.eval() | |
self.patch_drop.eval() | |
self.norm_pre.eval() | |
self.blocks.eval() | |
self.norm.eval() | |
for idx in range(self.num_layers): | |
getattr(self, f"vpt_drop_{idx}").train() | |
self.refiner.train() | |
self.decoder.train() | |
else: | |
for module in self.children(): | |
module.train(mode) | |
def _prepare_vpt(self, layer: int, batch_size: int, device: torch.device) -> Tensor: | |
vpt = getattr(self, f"vpt_{layer}").unsqueeze(0).expand(batch_size, -1, -1).to(device) # (batch_size, num_vpt, embed_dim) | |
vpt = getattr(self, f"vpt_drop_{layer}")(vpt) | |
return vpt | |
def _forward_patch_embed(self, x: Tensor) -> Tensor: | |
# This step performs 1) embed x into patches; 2) append the class token; 3) add positional embeddings. | |
assert len(x.shape) == 4, f"Expected input to have shape (batch_size, 3, height, width), but got {x.shape}" | |
batch_size, _, height, width = x.shape | |
# Step 1: Embed x into patches | |
x = self.patch_embed(x) # (b, h * w, d) | |
# Step 2: Append the class token | |
cls_token = self.cls_token.expand(batch_size, 1, -1) | |
x = torch.cat([cls_token, x], dim=1) | |
# Step 3: Add positional embeddings | |
pos_embed = self._interpolate_pos_embed(orig_h=self.input_size[0], orig_w=self.input_size[1], new_h=height, new_w=width).expand(batch_size, -1, -1) | |
x = self.pos_drop(x + pos_embed) | |
return x | |
def _forward_vpt(self, x: Tensor, idx: int) -> Tensor: | |
batch_size = x.shape[0] | |
device = x.device | |
# Assemble | |
vpt = self._prepare_vpt(idx, batch_size, device) | |
x = torch.cat([ | |
x[:, :1, :], # class token | |
vpt, | |
x[:, 1:, :] # patches | |
], dim=1) | |
# Forward | |
x = self.blocks[idx](x) | |
# Disassemble | |
x = torch.cat([ | |
x[:, :1, :], # class token | |
x[:, 1 + self.num_vpt:, :] # patches | |
], dim=1) | |
return x | |
def _forward(self, x: Tensor, idx: int) -> Tensor: | |
x = self.blocks[idx](x) | |
return x | |
def encode(self, x: Tensor) -> Tensor: | |
orig_h, orig_w = x.shape[-2:] | |
num_patches_h, num_patches_w = orig_h // self.patch_size[0], orig_w // self.patch_size[1] | |
x = self._forward_patch_embed(x) | |
x = self.patch_drop(x) | |
x = self.norm_pre(x) | |
for idx in range(self.num_layers): | |
x = self._forward_vpt(x, idx) if self.num_vpt > 0 else self._forward(x, idx) | |
x = self.norm(x) | |
x = x[:, 1:, :] | |
x = rearrange(x, "b (h w) d -> b d h w", h=num_patches_h, w=num_patches_w) | |
return x | |
def refine(self, x: Tensor) -> Tensor: | |
return self.refiner(x) | |
def decode(self, x: Tensor) -> Tensor: | |
return self.decoder(x) | |
def forward(self, x: Tensor) -> Tensor: | |
x = self.encode(x) | |
x = self.refine(x) | |
x = self.decode(x) | |
return x | |
def _vit( | |
model_name: str, | |
block_size: Optional[int] = None, | |
num_vpt: int = 32, | |
vpt_drop: float = 0.0, | |
input_size: Optional[Tuple[int, int]] = None, | |
norm: str = "none", | |
act: str = "none" | |
) -> ViT: | |
model = ViT( | |
model_name=model_name, | |
block_size=block_size, | |
num_vpt=num_vpt, | |
vpt_drop=vpt_drop, | |
input_size=input_size, | |
norm=norm, | |
act=act | |
) | |
return model | |