Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from torch import nn, Tensor | |
import torch.nn.functional as F | |
from typing import List, Optional | |
from .csrnet import _csrnet, _csrnet_bn | |
from ..utils import _init_weights | |
EPS = 1e-6 | |
class ContextualModule(nn.Module): | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int = 512, | |
scales: List[int] = [1, 2, 3, 6], | |
) -> None: | |
super().__init__() | |
self.scales = scales | |
self.multiscale_modules = nn.ModuleList([self.__make_scale__(in_channels, size) for size in scales]) | |
self.bottleneck = nn.Conv2d(in_channels * 2, out_channels, kernel_size=1) | |
self.relu = nn.ReLU(inplace=True) | |
self.weight_net = nn.Conv2d(in_channels, in_channels, kernel_size=1) | |
self.apply(_init_weights) | |
def __make_weight__(self, feature: Tensor, scale_feature: Tensor) -> Tensor: | |
weight_feature = feature - scale_feature | |
weight_feature = self.weight_net(weight_feature) | |
return F.sigmoid(weight_feature) | |
def __make_scale__(self, channels: int, size: int) -> nn.Module: | |
return nn.Sequential( | |
nn.AdaptiveAvgPool2d(output_size=(size, size)), | |
nn.Conv2d(channels, channels, kernel_size=1, bias=False), | |
) | |
def forward(self, feature: Tensor) -> Tensor: | |
h, w = feature.shape[-2:] | |
multiscale_feats = [F.interpolate(input=scale(feature), size=(h, w), mode="bilinear") for scale in self.multiscale_modules] | |
weights = [self.__make_weight__(feature, scale_feature) for scale_feature in multiscale_feats] | |
multiscale_feats = sum([multiscale_feats[i] * weights[i] for i in range(len(weights))]) / (sum(weights) + EPS) | |
overall_features = torch.cat([multiscale_feats, feature], dim=1) | |
overall_features = self.bottleneck(overall_features) | |
overall_features = self.relu(overall_features) | |
return overall_features | |
class CANNet(nn.Module): | |
def __init__( | |
self, | |
model_name: str, | |
block_size: Optional[int] = None, | |
norm: str = "none", | |
act: str = "none", | |
scales: List[int] = [1, 2, 3, 6], | |
) -> None: | |
super().__init__() | |
assert model_name in ["csrnet", "csrnet_bn"], f"Model name should be one of ['csrnet', 'csrnet_bn'], but got {model_name}." | |
assert block_size is None or block_size in [8, 16, 32], f"block_size should be one of [8, 16, 32], but got {block_size}." | |
assert isinstance(scales, (tuple, list)), f"scales should be a list or tuple, got {type(scales)}." | |
assert len(scales) > 0, f"Expected at least one size, got {len(scales)}." | |
assert all([isinstance(size, int) for size in scales]), f"Expected all size to be int, got {scales}." | |
self.model_name = model_name | |
self.scales = scales | |
csrnet = _csrnet(block_size=block_size, norm=norm, act=act) if model_name == "csrnet" else _csrnet_bn(block_size=block_size, norm=norm, act=act) | |
self.block_size = csrnet.block_size | |
self.encoder = csrnet.encoder | |
self.encoder_channels = csrnet.encoder_channels | |
self.encoder_reduction = csrnet.encoder_reduction # feature map size compared to input size | |
self.refiner = nn.Sequential( | |
csrnet.refiner, | |
ContextualModule(csrnet.refine_channels, 512, scales) | |
) | |
self.refiner_channels = 512 | |
self.refiner_reduction = csrnet.refiner_reduction # feature map size compared to input size | |
self.decoder = csrnet.decoder | |
self.decoder_channels = csrnet.decoder_channels | |
self.decoder_reduction = csrnet.decoder_reduction | |
def encode(self, x: Tensor) -> Tensor: | |
return self.encoder(x) | |
def refine(self, x: Tensor) -> Tensor: | |
return self.refiner(x) | |
def decode(self, x: Tensor) -> Tensor: | |
return self.decoder(x) | |
def forward(self, x: Tensor) -> Tensor: | |
x = self.encode(x) | |
x = self.refine(x) | |
x = self.decode(x) | |
return x | |
def _cannet(block_size: Optional[int] = None, norm: str = "none", act: str = "none", scales: List[int] = [1, 2, 3, 6]) -> CANNet: | |
return CANNet("csrnet", block_size=block_size, norm=norm, act=act, scales=scales) | |
def _cannet_bn(block_size: Optional[int] = None, norm: str = "none", act: str = "none", scales: List[int] = [1, 2, 3, 6]) -> CANNet: | |
return CANNet("csrnet_bn", block_size=block_size, norm=norm, act=act, scales=scales) | |