ZIP / models /ebc /model.py
Yiming-M's picture
2025-07-31 18:59 🐣
a7dedf9
raw
history blame
8.48 kB
import torch
from torch import nn, Tensor
from einops import rearrange
from typing import Tuple, Union, Dict, Optional, List
from functools import partial
from .cannet import _cannet, _cannet_bn
from .csrnet import _csrnet, _csrnet_bn
from .vgg import _vgg_encoder_decoder, _vgg_encoder
from .vit import _vit, supported_vit_backbones
from .timm_models import _timm_model
from .timm_models import regular_models as timm_regular_models, heavy_models as timm_heavy_models, light_models as timm_light_models, lighter_models as timm_lighter_models
from .hrnet import _hrnet, available_hrnets
from ..utils import conv1x1
regular_models = [
"csrnet", "csrnet_bn",
"cannet", "cannet_bn",
"vgg11", "vgg11_bn", "vgg13", "vgg13_bn", "vgg16", "vgg16_bn", "vgg19", "vgg19_bn",
"vgg11_ae", "vgg11_bn_ae", "vgg13_ae", "vgg13_bn_ae", "vgg16_ae", "vgg16_bn_ae", "vgg19_ae", "vgg19_bn_ae",
*timm_regular_models,
*available_hrnets,
]
heavy_models = timm_heavy_models
light_models = timm_light_models
lighter_models = timm_lighter_models
transformer_models = supported_vit_backbones
supported_models = regular_models + heavy_models + light_models + lighter_models + transformer_models
class EBC(nn.Module):
def __init__(
self,
model_name: str,
block_size: int,
bins: List[Tuple[float, float]],
bin_centers: List[float],
zero_inflated: bool = True,
num_vpt: Optional[int] = None,
vpt_drop: Optional[float] = None,
input_size: Optional[int] = None,
norm: str = "none",
act: str = "none"
) -> None:
super().__init__()
assert model_name in supported_models, f"Model name should be one of {supported_models}, but got {model_name}."
self.model_name = model_name
if input_size is not None:
input_size = (input_size, input_size) if isinstance(input_size, int) else input_size
assert len(input_size) == 2 and input_size[0] > 0 and input_size[1] > 0, f"Expected input_size to be a tuple of two positive integers, got {input_size}"
self.input_size = input_size
assert len(bins) == len(bin_centers), f"Expected bins and bin_centers to have the same length, got {len(bins)} and {len(bin_centers)}"
assert len(bins) >= 2, f"Expected at least 2 bins, got {len(bins)}"
assert all(len(b) == 2 for b in bins), f"Expected bins to be a list of tuples of length 2, got {bins}"
bins = [(float(b[0]), float(b[1])) for b in bins]
assert all(bin[0] <= p <= bin[1] for bin, p in zip(bins, bin_centers)), f"Expected bin_centers to be within the range of the corresponding bin, got {bins} and {bin_centers}"
self.block_size = block_size
self.bins = bins
self.register_buffer("bin_centers", torch.tensor(bin_centers, dtype=torch.float32, requires_grad=False).view(1, -1, 1, 1))
self.zero_inflated = zero_inflated
self.num_vpt = num_vpt
self.vpt_drop = vpt_drop
self.input_size = input_size
self.norm = norm
self.act = act
self._build_backbone()
self._build_head()
def _build_backbone(self) -> None:
model_name = self.model_name
if model_name == "csrnet":
self.backbone = _csrnet(self.block_size, self.norm, self.act)
elif model_name == "csrnet_bn":
self.backbone = _csrnet_bn(self.block_size, self.norm, self.act)
elif model_name == "cannet":
self.backbone = _cannet(self.block_size, self.norm, self.act)
elif model_name == "cannet_bn":
self.backbone = _cannet_bn(self.block_size, self.norm, self.act)
elif model_name == "vgg11":
self.backbone = _vgg_encoder("vgg11", self.block_size, self.norm, self.act)
elif model_name == "vgg11_ae":
self.backbone = _vgg_encoder_decoder("vgg11", self.block_size, self.norm, self.act)
elif model_name == "vgg11_bn":
self.backbone = _vgg_encoder("vgg11_bn", self.block_size, self.norm, self.act)
elif model_name == "vgg11_bn_ae":
self.backbone = _vgg_encoder_decoder("vgg11_bn", self.block_size, self.norm, self.act)
elif model_name == "vgg13":
self.backbone = _vgg_encoder("vgg13", self.block_size, self.norm, self.act)
elif model_name == "vgg13_ae":
self.backbone = _vgg_encoder_decoder("vgg13", self.block_size, self.norm, self.act)
elif model_name == "vgg13_bn":
self.backbone = _vgg_encoder("vgg13_bn", self.block_size, self.norm, self.act)
elif model_name == "vgg13_bn_ae":
self.backbone = _vgg_encoder_decoder("vgg13_bn", self.block_size, self.norm, self.act)
elif model_name == "vgg16":
self.backbone = _vgg_encoder("vgg16", self.block_size, self.norm, self.act)
elif model_name == "vgg16_ae":
self.backbone = _vgg_encoder_decoder("vgg16", self.block_size, self.norm, self.act)
elif model_name == "vgg16_bn":
self.backbone = _vgg_encoder("vgg16_bn", self.block_size, self.norm, self.act)
elif model_name == "vgg16_bn_ae":
self.backbone = _vgg_encoder_decoder("vgg16_bn", self.block_size, self.norm, self.act)
elif model_name == "vgg19":
self.backbone = _vgg_encoder("vgg19", self.block_size, self.norm, self.act)
elif model_name == "vgg19_ae":
self.backbone = _vgg_encoder_decoder("vgg19", self.block_size, self.norm, self.act)
elif model_name == "vgg19_bn":
self.backbone = _vgg_encoder("vgg19_bn", self.block_size, self.norm, self.act)
elif model_name == "vgg19_bn_ae":
self.backbone = _vgg_encoder_decoder("vgg19_bn", self.block_size, self.norm, self.act)
elif model_name in supported_vit_backbones:
self.backbone = _vit(model_name, block_size=self.block_size, num_vpt=self.num_vpt, vpt_drop=self.vpt_drop, input_size=self.input_size, norm=self.norm, act=self.act)
elif model_name in available_hrnets:
self.backbone = _hrnet(model_name, block_size=self.block_size, norm=self.norm, act=self.act)
else:
self.backbone = _timm_model(model_name, self.block_size, self.norm, self.act)
def _build_head(self) -> None:
channels = self.backbone.decoder_channels
if self.zero_inflated:
self.bin_head = conv1x1(
in_channels=channels,
out_channels=len(self.bins) - 1,
)
self.pi_head = conv1x1(
in_channels=channels,
out_channels=2,
) # this models structural 0s.
else:
self.bin_head = conv1x1(
in_channels=channels,
out_channels=len(self.bins),
)
def forward(self, x: Tensor) -> Union[Tensor, Tuple[Tensor, Tensor]]:
x = self.backbone(x)
if self.zero_inflated:
logit_pi_maps = self.pi_head(x) # shape: (B, 2, H, W)
logit_maps = self.bin_head(x) # shape: (B, C, H, W)
lambda_maps = (logit_maps.softmax(dim=1) * self.bin_centers[:, 1:]).sum(dim=1, keepdim=True) # shape: (B, 1, H, W)
# logit_pi_maps.softmax(dim=1)[:, 0] is the probability of zeros
den_maps = logit_pi_maps.softmax(dim=1)[:, 1:] * lambda_maps # expectation of the Poisson distribution
if self.training:
return logit_pi_maps, logit_maps, lambda_maps, den_maps
else:
return den_maps
else:
logit_maps = self.bin_head(x)
den_maps = (logit_maps.softmax(dim=1) * self.bin_centers).sum(dim=1, keepdim=True)
if self.training:
return logit_maps, den_maps
else:
return den_maps
def _ebc(
model_name: str,
block_size: int,
bins: List[Tuple[float, float]],
bin_centers: List[float],
zero_inflated: bool = True,
num_vpt: Optional[int] = None,
vpt_drop: Optional[float] = None,
input_size: Optional[int] = None,
norm: str = "none",
act: str = "none"
) -> EBC:
return EBC(
model_name=model_name,
block_size=block_size,
bins=bins,
bin_centers=bin_centers,
zero_inflated=zero_inflated,
num_vpt=num_vpt,
vpt_drop=vpt_drop,
input_size=input_size,
norm=norm,
act=act
)