Yiming-M commited on
Commit
a5dc50a
Β·
1 Parent(s): e85ffa0

2025-07-31 22:05 πŸš€

Browse files
models/clip_ebc/convnext.py CHANGED
@@ -53,7 +53,8 @@ class ConvNeXt(nn.Module):
53
  self.model_name, self.weight_name = model_name, weight_name
54
  self.block_size = block_size
55
 
56
- model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
 
57
 
58
  self.adapter = adapter
59
  if adapter:
 
53
  self.model_name, self.weight_name = model_name, weight_name
54
  self.block_size = block_size
55
 
56
+ # model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
57
+ model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False, return_transform=False).visual
58
 
59
  self.adapter = adapter
60
  if adapter:
models/clip_ebc/mobileclip.py CHANGED
@@ -41,7 +41,8 @@ class MobileCLIP(nn.Module):
41
  self.model_name, self.weight_name = model_name, weight_name
42
  self.block_size = block_size
43
 
44
- model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
 
45
 
46
  self.adapter = adapter
47
  if adapter:
 
41
  self.model_name, self.weight_name = model_name, weight_name
42
  self.block_size = block_size
43
 
44
+ # model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
45
+ model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False, return_transform=False).visual
46
 
47
  self.adapter = adapter
48
  if adapter:
models/clip_ebc/resnet.py CHANGED
@@ -49,7 +49,8 @@ class ResNet(nn.Module):
49
  self.model_name, self.weight_name = model_name, weight_name
50
  self.block_size = block_size
51
 
52
- model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
 
53
 
54
  self.adapter = adapter
55
  if adapter:
 
49
  self.model_name, self.weight_name = model_name, weight_name
50
  self.block_size = block_size
51
 
52
+ # model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
53
+ model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False, return_transform=False).visual
54
 
55
  self.adapter = adapter
56
  if adapter:
models/clip_ebc/vit.py CHANGED
@@ -95,7 +95,8 @@ class ViT(nn.Module):
95
  self.vpt_drop = vpt_drop
96
  self.adapter = adapter
97
 
98
- model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
 
99
 
100
  # Always freeze the parameters of the model
101
  for param in model.parameters():
 
95
  self.vpt_drop = vpt_drop
96
  self.adapter = adapter
97
 
98
+ # model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
99
+ model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False, return_transform=False).visual
100
 
101
  # Always freeze the parameters of the model
102
  for param in model.parameters():
models/ebc/csrnet.py CHANGED
@@ -27,7 +27,7 @@ class CSRNet(nn.Module):
27
  self.model_name = model_name
28
 
29
  vgg = VGG(make_vgg_layers(encoder_cfg, in_channels=3, batch_norm="bn" in model_name, dilation=1))
30
- vgg.load_state_dict(load_state_dict_from_url(vgg_urls[model_name]), strict=False)
31
  self.encoder = vgg.features
32
  self.encoder_reduction = 8
33
  self.encoder_channels = 512
 
27
  self.model_name = model_name
28
 
29
  vgg = VGG(make_vgg_layers(encoder_cfg, in_channels=3, batch_norm="bn" in model_name, dilation=1))
30
+ # vgg.load_state_dict(load_state_dict_from_url(vgg_urls[model_name]), strict=False)
31
  self.encoder = vgg.features
32
  self.encoder_reduction = 8
33
  self.encoder_channels = 512
models/ebc/hrnet.py CHANGED
@@ -27,7 +27,8 @@ class HRNet(nn.Module):
27
  self.model_name = model_name
28
  self.block_size = block_size if block_size is not None else 32
29
 
30
- model = timm.create_model(model_name, pretrained=True)
 
31
 
32
  self.conv1 = model.conv1
33
  self.bn1 = model.bn1
 
27
  self.model_name = model_name
28
  self.block_size = block_size if block_size is not None else 32
29
 
30
+ # model = timm.create_model(model_name, pretrained=True)
31
+ model = timm.create_model(model_name, pretrained=False)
32
 
33
  self.conv1 = model.conv1
34
  self.bn1 = model.bn1
models/ebc/timm_models.py CHANGED
@@ -151,7 +151,8 @@ class TIMMModel(nn.Module):
151
  assert model_name in supported_models, f"Backbone {model_name} not supported. Supported models are {supported_models}"
152
  assert block_size is None or block_size in [8, 16, 32], f"Block size should be one of [8, 16, 32], but got {block_size}."
153
  self.model_name = model_name
154
- self.encoder = create_model(model_name, pretrained=True, features_only=True, out_indices=[-1])
 
155
  self.encoder_channels = self.encoder.feature_info.channels()[-1]
156
  self.encoder_reduction = self.encoder.feature_info.reduction()[-1]
157
  self.block_size = block_size if block_size is not None else self.encoder_reduction
 
151
  assert model_name in supported_models, f"Backbone {model_name} not supported. Supported models are {supported_models}"
152
  assert block_size is None or block_size in [8, 16, 32], f"Block size should be one of [8, 16, 32], but got {block_size}."
153
  self.model_name = model_name
154
+ # self.encoder = create_model(model_name, pretrained=True, features_only=True, out_indices=[-1])
155
+ self.encoder = create_model(model_name, pretrained=False, features_only=True, out_indices=[-1])
156
  self.encoder_channels = self.encoder.feature_info.channels()[-1]
157
  self.encoder_reduction = self.encoder.feature_info.reduction()[-1]
158
  self.block_size = block_size if block_size is not None else self.encoder_reduction
models/ebc/vgg.py CHANGED
@@ -210,42 +210,42 @@ class VGG(nn.Module):
210
 
211
  def vgg11() -> VGG:
212
  model = VGG(make_vgg_layers(vgg_cfgs["A"]))
213
- model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg11"]), strict=False)
214
  return model
215
 
216
  def vgg11_bn() -> VGG:
217
  model = VGG(make_vgg_layers(vgg_cfgs["A"], batch_norm=True))
218
- model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg11_bn"]), strict=False)
219
  return model
220
 
221
  def vgg13() -> VGG:
222
  model = VGG(make_vgg_layers(vgg_cfgs["B"]))
223
- model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg13"]), strict=False)
224
  return model
225
 
226
  def vgg13_bn() -> VGG:
227
  model = VGG(make_vgg_layers(vgg_cfgs["B"], batch_norm=True))
228
- model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg13_bn"]), strict=False)
229
  return model
230
 
231
  def vgg16() -> VGG:
232
  model = VGG(make_vgg_layers(vgg_cfgs["D"]))
233
- model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg16"]), strict=False)
234
  return model
235
 
236
  def vgg16_bn() -> VGG:
237
  model = VGG(make_vgg_layers(vgg_cfgs["D"], batch_norm=True))
238
- model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg16_bn"]), strict=False)
239
  return model
240
 
241
  def vgg19() -> VGG:
242
  model = VGG(make_vgg_layers(vgg_cfgs["E"]))
243
- model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg19"]), strict=False)
244
  return model
245
 
246
  def vgg19_bn() -> VGG:
247
  model = VGG(make_vgg_layers(vgg_cfgs["E"], batch_norm=True))
248
- model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg19_bn"]), strict=False)
249
  return model
250
 
251
  def _vgg_encoder(model_name: str, block_size: Optional[int] = None, norm: str = "none", act: str = "none") -> VGGEncoder:
 
210
 
211
  def vgg11() -> VGG:
212
  model = VGG(make_vgg_layers(vgg_cfgs["A"]))
213
+ # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg11"]), strict=False)
214
  return model
215
 
216
  def vgg11_bn() -> VGG:
217
  model = VGG(make_vgg_layers(vgg_cfgs["A"], batch_norm=True))
218
+ # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg11_bn"]), strict=False)
219
  return model
220
 
221
  def vgg13() -> VGG:
222
  model = VGG(make_vgg_layers(vgg_cfgs["B"]))
223
+ # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg13"]), strict=False)
224
  return model
225
 
226
  def vgg13_bn() -> VGG:
227
  model = VGG(make_vgg_layers(vgg_cfgs["B"], batch_norm=True))
228
+ # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg13_bn"]), strict=False)
229
  return model
230
 
231
  def vgg16() -> VGG:
232
  model = VGG(make_vgg_layers(vgg_cfgs["D"]))
233
+ # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg16"]), strict=False)
234
  return model
235
 
236
  def vgg16_bn() -> VGG:
237
  model = VGG(make_vgg_layers(vgg_cfgs["D"], batch_norm=True))
238
+ # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg16_bn"]), strict=False)
239
  return model
240
 
241
  def vgg19() -> VGG:
242
  model = VGG(make_vgg_layers(vgg_cfgs["E"]))
243
+ # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg19"]), strict=False)
244
  return model
245
 
246
  def vgg19_bn() -> VGG:
247
  model = VGG(make_vgg_layers(vgg_cfgs["E"], batch_norm=True))
248
+ # model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg19_bn"]), strict=False)
249
  return model
250
 
251
  def _vgg_encoder(model_name: str, block_size: Optional[int] = None, norm: str = "none", act: str = "none") -> VGGEncoder:
models/ebc/vit.py CHANGED
@@ -86,7 +86,8 @@ class ViT(nn.Module):
86
  self.num_vpt = num_vpt
87
  self.vpt_drop = vpt_drop
88
 
89
- model = timm.create_model(model_name, pretrained=True)
 
90
 
91
  self.input_size = input_size if input_size is not None else model.patch_embed.img_size
92
  self.pretrain_size = model.patch_embed.img_size
 
86
  self.num_vpt = num_vpt
87
  self.vpt_drop = vpt_drop
88
 
89
+ # model = timm.create_model(model_name, pretrained=True)
90
+ model = timm.create_model(model_name, pretrained=False)
91
 
92
  self.input_size = input_size if input_size is not None else model.patch_embed.img_size
93
  self.pretrain_size = model.patch_embed.img_size