Spaces:
Running
on
Zero
Running
on
Zero
2025-07-31 22:05 π
Browse files- models/clip_ebc/convnext.py +2 -1
- models/clip_ebc/mobileclip.py +2 -1
- models/clip_ebc/resnet.py +2 -1
- models/clip_ebc/vit.py +2 -1
- models/ebc/csrnet.py +1 -1
- models/ebc/hrnet.py +2 -1
- models/ebc/timm_models.py +2 -1
- models/ebc/vgg.py +8 -8
- models/ebc/vit.py +2 -1
models/clip_ebc/convnext.py
CHANGED
@@ -53,7 +53,8 @@ class ConvNeXt(nn.Module):
|
|
53 |
self.model_name, self.weight_name = model_name, weight_name
|
54 |
self.block_size = block_size
|
55 |
|
56 |
-
model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
|
|
57 |
|
58 |
self.adapter = adapter
|
59 |
if adapter:
|
|
|
53 |
self.model_name, self.weight_name = model_name, weight_name
|
54 |
self.block_size = block_size
|
55 |
|
56 |
+
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
57 |
+
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False, return_transform=False).visual
|
58 |
|
59 |
self.adapter = adapter
|
60 |
if adapter:
|
models/clip_ebc/mobileclip.py
CHANGED
@@ -41,7 +41,8 @@ class MobileCLIP(nn.Module):
|
|
41 |
self.model_name, self.weight_name = model_name, weight_name
|
42 |
self.block_size = block_size
|
43 |
|
44 |
-
model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
|
|
45 |
|
46 |
self.adapter = adapter
|
47 |
if adapter:
|
|
|
41 |
self.model_name, self.weight_name = model_name, weight_name
|
42 |
self.block_size = block_size
|
43 |
|
44 |
+
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
45 |
+
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False, return_transform=False).visual
|
46 |
|
47 |
self.adapter = adapter
|
48 |
if adapter:
|
models/clip_ebc/resnet.py
CHANGED
@@ -49,7 +49,8 @@ class ResNet(nn.Module):
|
|
49 |
self.model_name, self.weight_name = model_name, weight_name
|
50 |
self.block_size = block_size
|
51 |
|
52 |
-
model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
|
|
53 |
|
54 |
self.adapter = adapter
|
55 |
if adapter:
|
|
|
49 |
self.model_name, self.weight_name = model_name, weight_name
|
50 |
self.block_size = block_size
|
51 |
|
52 |
+
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
53 |
+
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False, return_transform=False).visual
|
54 |
|
55 |
self.adapter = adapter
|
56 |
if adapter:
|
models/clip_ebc/vit.py
CHANGED
@@ -95,7 +95,8 @@ class ViT(nn.Module):
|
|
95 |
self.vpt_drop = vpt_drop
|
96 |
self.adapter = adapter
|
97 |
|
98 |
-
model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
|
|
99 |
|
100 |
# Always freeze the parameters of the model
|
101 |
for param in model.parameters():
|
|
|
95 |
self.vpt_drop = vpt_drop
|
96 |
self.adapter = adapter
|
97 |
|
98 |
+
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
99 |
+
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False, return_transform=False).visual
|
100 |
|
101 |
# Always freeze the parameters of the model
|
102 |
for param in model.parameters():
|
models/ebc/csrnet.py
CHANGED
@@ -27,7 +27,7 @@ class CSRNet(nn.Module):
|
|
27 |
self.model_name = model_name
|
28 |
|
29 |
vgg = VGG(make_vgg_layers(encoder_cfg, in_channels=3, batch_norm="bn" in model_name, dilation=1))
|
30 |
-
vgg.load_state_dict(load_state_dict_from_url(vgg_urls[model_name]), strict=False)
|
31 |
self.encoder = vgg.features
|
32 |
self.encoder_reduction = 8
|
33 |
self.encoder_channels = 512
|
|
|
27 |
self.model_name = model_name
|
28 |
|
29 |
vgg = VGG(make_vgg_layers(encoder_cfg, in_channels=3, batch_norm="bn" in model_name, dilation=1))
|
30 |
+
# vgg.load_state_dict(load_state_dict_from_url(vgg_urls[model_name]), strict=False)
|
31 |
self.encoder = vgg.features
|
32 |
self.encoder_reduction = 8
|
33 |
self.encoder_channels = 512
|
models/ebc/hrnet.py
CHANGED
@@ -27,7 +27,8 @@ class HRNet(nn.Module):
|
|
27 |
self.model_name = model_name
|
28 |
self.block_size = block_size if block_size is not None else 32
|
29 |
|
30 |
-
model = timm.create_model(model_name, pretrained=True)
|
|
|
31 |
|
32 |
self.conv1 = model.conv1
|
33 |
self.bn1 = model.bn1
|
|
|
27 |
self.model_name = model_name
|
28 |
self.block_size = block_size if block_size is not None else 32
|
29 |
|
30 |
+
# model = timm.create_model(model_name, pretrained=True)
|
31 |
+
model = timm.create_model(model_name, pretrained=False)
|
32 |
|
33 |
self.conv1 = model.conv1
|
34 |
self.bn1 = model.bn1
|
models/ebc/timm_models.py
CHANGED
@@ -151,7 +151,8 @@ class TIMMModel(nn.Module):
|
|
151 |
assert model_name in supported_models, f"Backbone {model_name} not supported. Supported models are {supported_models}"
|
152 |
assert block_size is None or block_size in [8, 16, 32], f"Block size should be one of [8, 16, 32], but got {block_size}."
|
153 |
self.model_name = model_name
|
154 |
-
self.encoder = create_model(model_name, pretrained=True, features_only=True, out_indices=[-1])
|
|
|
155 |
self.encoder_channels = self.encoder.feature_info.channels()[-1]
|
156 |
self.encoder_reduction = self.encoder.feature_info.reduction()[-1]
|
157 |
self.block_size = block_size if block_size is not None else self.encoder_reduction
|
|
|
151 |
assert model_name in supported_models, f"Backbone {model_name} not supported. Supported models are {supported_models}"
|
152 |
assert block_size is None or block_size in [8, 16, 32], f"Block size should be one of [8, 16, 32], but got {block_size}."
|
153 |
self.model_name = model_name
|
154 |
+
# self.encoder = create_model(model_name, pretrained=True, features_only=True, out_indices=[-1])
|
155 |
+
self.encoder = create_model(model_name, pretrained=False, features_only=True, out_indices=[-1])
|
156 |
self.encoder_channels = self.encoder.feature_info.channels()[-1]
|
157 |
self.encoder_reduction = self.encoder.feature_info.reduction()[-1]
|
158 |
self.block_size = block_size if block_size is not None else self.encoder_reduction
|
models/ebc/vgg.py
CHANGED
@@ -210,42 +210,42 @@ class VGG(nn.Module):
|
|
210 |
|
211 |
def vgg11() -> VGG:
|
212 |
model = VGG(make_vgg_layers(vgg_cfgs["A"]))
|
213 |
-
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg11"]), strict=False)
|
214 |
return model
|
215 |
|
216 |
def vgg11_bn() -> VGG:
|
217 |
model = VGG(make_vgg_layers(vgg_cfgs["A"], batch_norm=True))
|
218 |
-
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg11_bn"]), strict=False)
|
219 |
return model
|
220 |
|
221 |
def vgg13() -> VGG:
|
222 |
model = VGG(make_vgg_layers(vgg_cfgs["B"]))
|
223 |
-
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg13"]), strict=False)
|
224 |
return model
|
225 |
|
226 |
def vgg13_bn() -> VGG:
|
227 |
model = VGG(make_vgg_layers(vgg_cfgs["B"], batch_norm=True))
|
228 |
-
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg13_bn"]), strict=False)
|
229 |
return model
|
230 |
|
231 |
def vgg16() -> VGG:
|
232 |
model = VGG(make_vgg_layers(vgg_cfgs["D"]))
|
233 |
-
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg16"]), strict=False)
|
234 |
return model
|
235 |
|
236 |
def vgg16_bn() -> VGG:
|
237 |
model = VGG(make_vgg_layers(vgg_cfgs["D"], batch_norm=True))
|
238 |
-
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg16_bn"]), strict=False)
|
239 |
return model
|
240 |
|
241 |
def vgg19() -> VGG:
|
242 |
model = VGG(make_vgg_layers(vgg_cfgs["E"]))
|
243 |
-
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg19"]), strict=False)
|
244 |
return model
|
245 |
|
246 |
def vgg19_bn() -> VGG:
|
247 |
model = VGG(make_vgg_layers(vgg_cfgs["E"], batch_norm=True))
|
248 |
-
model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg19_bn"]), strict=False)
|
249 |
return model
|
250 |
|
251 |
def _vgg_encoder(model_name: str, block_size: Optional[int] = None, norm: str = "none", act: str = "none") -> VGGEncoder:
|
|
|
210 |
|
211 |
def vgg11() -> VGG:
|
212 |
model = VGG(make_vgg_layers(vgg_cfgs["A"]))
|
213 |
+
# model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg11"]), strict=False)
|
214 |
return model
|
215 |
|
216 |
def vgg11_bn() -> VGG:
|
217 |
model = VGG(make_vgg_layers(vgg_cfgs["A"], batch_norm=True))
|
218 |
+
# model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg11_bn"]), strict=False)
|
219 |
return model
|
220 |
|
221 |
def vgg13() -> VGG:
|
222 |
model = VGG(make_vgg_layers(vgg_cfgs["B"]))
|
223 |
+
# model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg13"]), strict=False)
|
224 |
return model
|
225 |
|
226 |
def vgg13_bn() -> VGG:
|
227 |
model = VGG(make_vgg_layers(vgg_cfgs["B"], batch_norm=True))
|
228 |
+
# model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg13_bn"]), strict=False)
|
229 |
return model
|
230 |
|
231 |
def vgg16() -> VGG:
|
232 |
model = VGG(make_vgg_layers(vgg_cfgs["D"]))
|
233 |
+
# model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg16"]), strict=False)
|
234 |
return model
|
235 |
|
236 |
def vgg16_bn() -> VGG:
|
237 |
model = VGG(make_vgg_layers(vgg_cfgs["D"], batch_norm=True))
|
238 |
+
# model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg16_bn"]), strict=False)
|
239 |
return model
|
240 |
|
241 |
def vgg19() -> VGG:
|
242 |
model = VGG(make_vgg_layers(vgg_cfgs["E"]))
|
243 |
+
# model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg19"]), strict=False)
|
244 |
return model
|
245 |
|
246 |
def vgg19_bn() -> VGG:
|
247 |
model = VGG(make_vgg_layers(vgg_cfgs["E"], batch_norm=True))
|
248 |
+
# model.load_state_dict(state_dict=load_state_dict_from_url(vgg_urls["vgg19_bn"]), strict=False)
|
249 |
return model
|
250 |
|
251 |
def _vgg_encoder(model_name: str, block_size: Optional[int] = None, norm: str = "none", act: str = "none") -> VGGEncoder:
|
models/ebc/vit.py
CHANGED
@@ -86,7 +86,8 @@ class ViT(nn.Module):
|
|
86 |
self.num_vpt = num_vpt
|
87 |
self.vpt_drop = vpt_drop
|
88 |
|
89 |
-
model = timm.create_model(model_name, pretrained=True)
|
|
|
90 |
|
91 |
self.input_size = input_size if input_size is not None else model.patch_embed.img_size
|
92 |
self.pretrain_size = model.patch_embed.img_size
|
|
|
86 |
self.num_vpt = num_vpt
|
87 |
self.vpt_drop = vpt_drop
|
88 |
|
89 |
+
# model = timm.create_model(model_name, pretrained=True)
|
90 |
+
model = timm.create_model(model_name, pretrained=False)
|
91 |
|
92 |
self.input_size = input_size if input_size is not None else model.patch_embed.img_size
|
93 |
self.pretrain_size = model.patch_embed.img_size
|