Spaces:
Running
on
Zero
Running
on
Zero
2025-08-01 08:54 🐛
Browse files
app.py
CHANGED
@@ -427,13 +427,13 @@ def predict(image: Image.Image, variant_dataset_metric: str):
|
|
427 |
complete_zero_map = strucrual_zero_map + sampling_zero_map
|
428 |
|
429 |
# Normalize maps for display purposes
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
|
438 |
# strucrual_zero_map = normalize_map(strucrual_zero_map)
|
439 |
# sampling_zero_map = normalize_map(sampling_zero_map)
|
@@ -442,8 +442,8 @@ def predict(image: Image.Image, variant_dataset_metric: str):
|
|
442 |
# complete_zero_map = normalize_map(complete_zero_map)
|
443 |
|
444 |
# Apply a colormap for better visualization
|
445 |
-
# Options: 'viridis'
|
446 |
-
colormap = cm.get_cmap("
|
447 |
|
448 |
# The colormap returns values in [0,1]. Scale to [0,255] and convert to uint8.
|
449 |
den_map = (colormap(den_map) * 255).astype(np.uint8)
|
@@ -536,9 +536,108 @@ select option[value*="━━━━━━"] {
|
|
536 |
|
537 |
/* 整体主题美化 */
|
538 |
.gradio-container {
|
539 |
-
max-width:
|
540 |
margin: 0 auto !important;
|
541 |
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
542 |
}
|
543 |
|
544 |
/* 标题样式 */
|
@@ -546,107 +645,219 @@ select option[value*="━━━━━━"] {
|
|
546 |
text-align: center !important;
|
547 |
color: #2563eb !important;
|
548 |
font-weight: 700 !important;
|
549 |
-
font-size:
|
550 |
margin-bottom: 0.5rem !important;
|
551 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
552 |
-webkit-background-clip: text !important;
|
553 |
-webkit-text-fill-color: transparent !important;
|
|
|
554 |
}
|
555 |
|
556 |
/* 副标题样式 */
|
557 |
.gr-markdown p {
|
558 |
text-align: center !important;
|
559 |
color: #6b7280 !important;
|
560 |
-
font-size: 1.
|
561 |
margin-bottom: 2rem !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
562 |
}
|
563 |
|
564 |
/* 按钮美化 */
|
565 |
.gr-button {
|
566 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
567 |
border: none !important;
|
568 |
-
border-radius:
|
569 |
color: white !important;
|
570 |
font-weight: 600 !important;
|
571 |
-
font-size: 1rem !important;
|
572 |
-
padding:
|
573 |
transition: all 0.3s ease !important;
|
574 |
-
box-shadow: 0
|
|
|
|
|
575 |
}
|
576 |
|
577 |
.gr-button:hover {
|
578 |
-
transform: translateY(-
|
579 |
-
box-shadow: 0
|
|
|
580 |
}
|
581 |
|
582 |
/* 输入框样式 */
|
583 |
.gr-textbox, .gr-dropdown {
|
584 |
-
border-radius:
|
585 |
border: 2px solid #e5e7eb !important;
|
586 |
-
transition:
|
|
|
|
|
|
|
587 |
}
|
588 |
|
589 |
.gr-textbox:focus, .gr-dropdown:focus {
|
590 |
border-color: #667eea !important;
|
591 |
-
box-shadow: 0 0 0
|
|
|
592 |
}
|
593 |
|
594 |
-
/* 图像容器美化 */
|
595 |
.gr-image {
|
596 |
-
border-radius:
|
597 |
overflow: hidden !important;
|
598 |
-
box-shadow: 0
|
599 |
transition: all 0.3s ease !important;
|
|
|
|
|
|
|
600 |
}
|
601 |
|
602 |
.gr-image:hover {
|
603 |
-
box-shadow: 0
|
604 |
transform: translateY(-2px) !important;
|
605 |
}
|
606 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
607 |
/* 列间距优化 */
|
608 |
.gr-column {
|
609 |
padding: 0 8px !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
610 |
}
|
611 |
|
612 |
/* 标签美化 */
|
613 |
.gr-label {
|
614 |
-
font-weight:
|
615 |
color: #374151 !important;
|
616 |
-
margin-bottom:
|
|
|
|
|
|
|
617 |
}
|
618 |
|
619 |
/* 模型状态框特殊样式 */
|
620 |
.gr-textbox[data-testid*="model-status"] {
|
621 |
-
background: linear-gradient(135deg, #
|
622 |
font-family: 'Monaco', 'Menlo', monospace !important;
|
623 |
-
font-size: 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
624 |
}
|
625 |
|
626 |
/* 示例区域美化 */
|
627 |
.gr-examples {
|
628 |
-
background:
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
|
|
|
|
633 |
}
|
634 |
|
635 |
-
/*
|
636 |
-
|
637 |
-
.
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
margin-bottom: 16px !important;
|
643 |
-
}
|
644 |
-
|
645 |
-
.gr-markdown h1 {
|
646 |
-
font-size: 2rem !important;
|
647 |
-
}
|
648 |
}
|
649 |
|
|
|
|
|
650 |
/* 加载动画 */
|
651 |
@keyframes pulse {
|
652 |
0%, 100% { opacity: 1; }
|
@@ -691,25 +902,43 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), title="ZIP Crowd Counting") as d
|
|
691 |
Choose from different model variants: **ZIP-B** (Base), **ZIP-S** (Small), **ZIP-T** (Tiny), **ZIP-N** (Nano), **ZIP-P** (Pico)
|
692 |
""")
|
693 |
|
|
|
694 |
with gr.Row():
|
695 |
-
with gr.Column(scale=
|
696 |
-
# 模型选择区域
|
697 |
with gr.Group():
|
698 |
gr.Markdown("### 🤖 Model Configuration")
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
708 |
interactive=False,
|
709 |
-
|
|
|
710 |
)
|
711 |
-
|
712 |
-
|
|
|
|
|
713 |
with gr.Group():
|
714 |
gr.Markdown("### 📸 Image Input")
|
715 |
input_img = gr.Image(
|
@@ -723,29 +952,53 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), title="ZIP Crowd Counting") as d
|
|
723 |
variant="primary",
|
724 |
size="lg"
|
725 |
)
|
726 |
-
|
727 |
with gr.Column(scale=1):
|
728 |
with gr.Group():
|
729 |
gr.Markdown("### 📊 Main Results")
|
730 |
-
output_den_map = gr.Image(
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
)
|
735 |
-
|
736 |
with gr.Column(scale=1):
|
737 |
with gr.Group():
|
738 |
gr.Markdown("### 🔥 Hotspots")
|
739 |
-
output_lambda_map = gr.Image(
|
|
|
|
|
|
|
|
|
740 |
|
741 |
-
# Zero Analysis
|
742 |
-
with gr.
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
749 |
|
750 |
# 当模型变化时,自动更新模型
|
751 |
def on_model_change(variant_dataset_metric):
|
@@ -806,12 +1059,12 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), title="ZIP Crowd Counting") as d
|
|
806 |
|
807 |
**📊 Main Results:**
|
808 |
- **🎯 Density Map**: Shows where people are located with color intensity, modeled by (1-π) * λ
|
809 |
-
-
|
810 |
|
811 |
**🔍 Zero Analysis:**
|
812 |
- **🏗️ Structural Zero Map**: Indicates regions that structurally cannot contain head annotations (e.g., walls, sky, torso, or background). These are governed by the π head, which estimates the probability that a region never contains people.
|
813 |
- **📊 Sampling Zero Map**: Shows areas where people could be present but happen not to appear in the current image. These zeros are modeled by (1-π) * exp(-λ), where the expected count λ is near zero.
|
814 |
-
-
|
815 |
|
816 |
**🔥 Hotspots:**
|
817 |
- **📈 Lambda Map**: Highlights areas with high expected crowd density. Each value represents the expected number of people in that region, modeled by the Poisson intensity (λ). This map focuses on *how many* people are likely to be present, **WITHOUT** assuming people could appear there. ⚠️ Lambda Map **NEEDS** to be combined with Structural Zero Map by (1-π) * λ to produce the final density map.
|
|
|
427 |
complete_zero_map = strucrual_zero_map + sampling_zero_map
|
428 |
|
429 |
# Normalize maps for display purposes
|
430 |
+
def normalize_map(x: np.ndarray) -> np.ndarray:
|
431 |
+
""" Normalize the map to [0, 1] range for visualization. """
|
432 |
+
x_min = np.min(x)
|
433 |
+
x_max = np.max(x)
|
434 |
+
if x_max - x_min < EPS:
|
435 |
+
return np.zeros_like(x)
|
436 |
+
return (x - x_min) / (x_max - x_min + EPS)
|
437 |
|
438 |
# strucrual_zero_map = normalize_map(strucrual_zero_map)
|
439 |
# sampling_zero_map = normalize_map(sampling_zero_map)
|
|
|
442 |
# complete_zero_map = normalize_map(complete_zero_map)
|
443 |
|
444 |
# Apply a colormap for better visualization
|
445 |
+
# Options: 'viridis', 'plasma', 'hot', 'inferno', 'jet' (recommended)
|
446 |
+
colormap = cm.get_cmap("jet")
|
447 |
|
448 |
# The colormap returns values in [0,1]. Scale to [0,255] and convert to uint8.
|
449 |
den_map = (colormap(den_map) * 255).astype(np.uint8)
|
|
|
536 |
|
537 |
/* 整体主题美化 */
|
538 |
.gradio-container {
|
539 |
+
max-width: 1600px !important;
|
540 |
margin: 0 auto !important;
|
541 |
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
|
542 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%) !important;
|
543 |
+
min-height: 100vh !important;
|
544 |
+
padding: 20px !important;
|
545 |
+
}
|
546 |
+
|
547 |
+
/* 响应式布局 - 自动调整列宽 */
|
548 |
+
@media (max-width: 1400px) {
|
549 |
+
.gradio-container {
|
550 |
+
max-width: 1200px !important;
|
551 |
+
padding: 18px !important;
|
552 |
+
}
|
553 |
+
}
|
554 |
+
|
555 |
+
@media (max-width: 1200px) {
|
556 |
+
.gradio-container {
|
557 |
+
max-width: 100% !important;
|
558 |
+
padding: 16px !important;
|
559 |
+
}
|
560 |
+
|
561 |
+
/* 在中等屏幕上,将第二行改为垂直布局 */
|
562 |
+
.gr-row:nth-of-type(2) {
|
563 |
+
flex-direction: column !important;
|
564 |
+
}
|
565 |
+
|
566 |
+
.gr-row:nth-of-type(2) .gr-column {
|
567 |
+
width: 100% !important;
|
568 |
+
margin-bottom: 20px !important;
|
569 |
+
}
|
570 |
+
}
|
571 |
+
|
572 |
+
@media (max-width: 900px) {
|
573 |
+
/* 在小屏幕上,将第三行也改为垂直布局 */
|
574 |
+
.gr-row:nth-of-type(3) {
|
575 |
+
flex-direction: column !important;
|
576 |
+
}
|
577 |
+
|
578 |
+
.gr-row:nth-of-type(3) .gr-column {
|
579 |
+
width: 100% !important;
|
580 |
+
margin-bottom: 20px !important;
|
581 |
+
}
|
582 |
+
|
583 |
+
/* Zero Analysis 在小屏幕上也改为垂直布局 */
|
584 |
+
.gr-group .gr-row {
|
585 |
+
flex-direction: column !important;
|
586 |
+
}
|
587 |
+
|
588 |
+
.gr-group .gr-row .gr-column {
|
589 |
+
width: 100% !important;
|
590 |
+
margin-bottom: 16px !important;
|
591 |
+
}
|
592 |
+
}
|
593 |
+
|
594 |
+
@media (max-width: 768px) {
|
595 |
+
.gradio-container {
|
596 |
+
padding: 12px !important;
|
597 |
+
}
|
598 |
+
|
599 |
+
.gr-column {
|
600 |
+
margin-bottom: 16px !important;
|
601 |
+
padding: 0 4px !important;
|
602 |
+
}
|
603 |
+
|
604 |
+
.gr-markdown h1 {
|
605 |
+
font-size: 2rem !important;
|
606 |
+
}
|
607 |
+
|
608 |
+
.gr-group {
|
609 |
+
padding: 16px !important;
|
610 |
+
}
|
611 |
+
|
612 |
+
.gr-button {
|
613 |
+
padding: 12px 24px !important;
|
614 |
+
font-size: 1rem !important;
|
615 |
+
}
|
616 |
+
|
617 |
+
/* 图像高度在小屏幕上调整 */
|
618 |
+
.gr-image {
|
619 |
+
height: 300px !important;
|
620 |
+
}
|
621 |
+
|
622 |
+
.zero-analysis-image {
|
623 |
+
height: 300px !important;
|
624 |
+
}
|
625 |
+
}
|
626 |
+
|
627 |
+
/* 超宽屏幕优化 */
|
628 |
+
@media (min-width: 1600px) {
|
629 |
+
.gradio-container {
|
630 |
+
max-width: 1800px !important;
|
631 |
+
padding: 24px !important;
|
632 |
+
}
|
633 |
+
|
634 |
+
.gr-image {
|
635 |
+
height: 450px !important;
|
636 |
+
}
|
637 |
+
|
638 |
+
.zero-analysis-image {
|
639 |
+
height: 450px !important;
|
640 |
+
}
|
641 |
}
|
642 |
|
643 |
/* 标题样式 */
|
|
|
645 |
text-align: center !important;
|
646 |
color: #2563eb !important;
|
647 |
font-weight: 700 !important;
|
648 |
+
font-size: 3rem !important;
|
649 |
margin-bottom: 0.5rem !important;
|
650 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
651 |
-webkit-background-clip: text !important;
|
652 |
-webkit-text-fill-color: transparent !important;
|
653 |
+
text-shadow: 0 4px 8px rgba(0,0,0,0.1) !important;
|
654 |
}
|
655 |
|
656 |
/* 副标题样式 */
|
657 |
.gr-markdown p {
|
658 |
text-align: center !important;
|
659 |
color: #6b7280 !important;
|
660 |
+
font-size: 1.2rem !important;
|
661 |
margin-bottom: 2rem !important;
|
662 |
+
font-weight: 500 !important;
|
663 |
+
}
|
664 |
+
|
665 |
+
/* 主要布局组美化 */
|
666 |
+
.gr-group {
|
667 |
+
background: rgba(255, 255, 255, 0.9) !important;
|
668 |
+
backdrop-filter: blur(10px) !important;
|
669 |
+
border-radius: 20px !important;
|
670 |
+
padding: 24px !important;
|
671 |
+
margin: 16px 0 !important;
|
672 |
+
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1) !important;
|
673 |
+
border: 1px solid rgba(255, 255, 255, 0.2) !important;
|
674 |
+
transition: all 0.3s ease !important;
|
675 |
+
}
|
676 |
+
|
677 |
+
.gr-group:hover {
|
678 |
+
transform: translateY(-4px) !important;
|
679 |
+
box-shadow: 0 12px 40px rgba(0, 0, 0, 0.15) !important;
|
680 |
}
|
681 |
|
682 |
/* 按钮美化 */
|
683 |
.gr-button {
|
684 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
685 |
border: none !important;
|
686 |
+
border-radius: 12px !important;
|
687 |
color: white !important;
|
688 |
font-weight: 600 !important;
|
689 |
+
font-size: 1.1rem !important;
|
690 |
+
padding: 16px 32px !important;
|
691 |
transition: all 0.3s ease !important;
|
692 |
+
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.3) !important;
|
693 |
+
text-transform: uppercase !important;
|
694 |
+
letter-spacing: 0.5px !important;
|
695 |
}
|
696 |
|
697 |
.gr-button:hover {
|
698 |
+
transform: translateY(-3px) !important;
|
699 |
+
box-shadow: 0 10px 30px rgba(102, 126, 234, 0.4) !important;
|
700 |
+
background: linear-gradient(135deg, #5a67d8 0%, #6b46c1 100%) !important;
|
701 |
}
|
702 |
|
703 |
/* 输入框样式 */
|
704 |
.gr-textbox, .gr-dropdown {
|
705 |
+
border-radius: 12px !important;
|
706 |
border: 2px solid #e5e7eb !important;
|
707 |
+
transition: all 0.3s ease !important;
|
708 |
+
background: rgba(255, 255, 255, 0.8) !important;
|
709 |
+
font-size: 1rem !important;
|
710 |
+
padding: 12px 16px !important;
|
711 |
}
|
712 |
|
713 |
.gr-textbox:focus, .gr-dropdown:focus {
|
714 |
border-color: #667eea !important;
|
715 |
+
box-shadow: 0 0 0 4px rgba(102, 126, 234, 0.1) !important;
|
716 |
+
background: rgba(255, 255, 255, 1) !important;
|
717 |
}
|
718 |
|
719 |
+
/* 图像容器美化 - 统一尺寸 */
|
720 |
.gr-image {
|
721 |
+
border-radius: 16px !important;
|
722 |
overflow: hidden !important;
|
723 |
+
box-shadow: 0 8px 25px rgba(0, 0, 0, 0.15) !important;
|
724 |
transition: all 0.3s ease !important;
|
725 |
+
background: white !important;
|
726 |
+
height: 400px !important;
|
727 |
+
width: 100% !important;
|
728 |
}
|
729 |
|
730 |
.gr-image:hover {
|
731 |
+
box-shadow: 0 15px 35px rgba(0, 0, 0, 0.2) !important;
|
732 |
transform: translateY(-2px) !important;
|
733 |
}
|
734 |
|
735 |
+
/* 确保第二行组件等高 */
|
736 |
+
.gr-row:nth-of-type(2) .gr-group {
|
737 |
+
height: auto !important;
|
738 |
+
min-height: 180px !important;
|
739 |
+
display: flex !important;
|
740 |
+
flex-direction: column !important;
|
741 |
+
}
|
742 |
+
|
743 |
+
.gr-row:nth-of-type(2) .gr-group > * {
|
744 |
+
flex: 1 !important;
|
745 |
+
}
|
746 |
+
|
747 |
+
/* 确保第二行的文本框具有相同的高度 */
|
748 |
+
.gr-row:nth-of-type(2) .gr-textbox {
|
749 |
+
min-height: 80px !important;
|
750 |
+
display: flex !important;
|
751 |
+
align-items: center !important;
|
752 |
+
}
|
753 |
+
|
754 |
+
/* 确保第二行下拉菜单区域等高 */
|
755 |
+
.gr-row:nth-of-type(2) .gr-dropdown {
|
756 |
+
min-height: 60px !important;
|
757 |
+
}
|
758 |
+
|
759 |
/* 列间距优化 */
|
760 |
.gr-column {
|
761 |
padding: 0 8px !important;
|
762 |
+
margin-bottom: 16px !important;
|
763 |
+
}
|
764 |
+
|
765 |
+
/* 第二行特殊布局调整 */
|
766 |
+
.gr-row:nth-of-type(2) .gr-column:first-child {
|
767 |
+
padding-right: 12px !important;
|
768 |
+
}
|
769 |
+
|
770 |
+
.gr-row:nth-of-type(2) .gr-column:last-child {
|
771 |
+
padding-left: 12px !important;
|
772 |
}
|
773 |
|
774 |
/* 标签美化 */
|
775 |
.gr-label {
|
776 |
+
font-weight: 700 !important;
|
777 |
color: #374151 !important;
|
778 |
+
margin-bottom: 12px !important;
|
779 |
+
font-size: 1.1rem !important;
|
780 |
+
text-transform: uppercase !important;
|
781 |
+
letter-spacing: 0.5px !important;
|
782 |
}
|
783 |
|
784 |
/* 模型状态框特殊样式 */
|
785 |
.gr-textbox[data-testid*="model-status"] {
|
786 |
+
background: linear-gradient(135deg, #ecfdf5 0%, #d1fae5 100%) !important;
|
787 |
font-family: 'Monaco', 'Menlo', monospace !important;
|
788 |
+
font-size: 0.95rem !important;
|
789 |
+
font-weight: 600 !important;
|
790 |
+
border: 2px solid #10b981 !important;
|
791 |
+
}
|
792 |
+
|
793 |
+
/* Zero Analysis 特殊布局 */
|
794 |
+
.gr-row:has(.gr-image[label*="Zero"]) {
|
795 |
+
background: linear-gradient(135deg, rgba(255,255,255,0.95) 0%, rgba(248,250,252,0.95) 100%) !important;
|
796 |
+
border-radius: 20px !important;
|
797 |
+
padding: 24px !important;
|
798 |
+
margin: 20px 0 !important;
|
799 |
+
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1) !important;
|
800 |
+
}
|
801 |
+
|
802 |
+
/* Zero Analysis 图像特殊样式 - 统一尺寸 */
|
803 |
+
.zero-analysis-image {
|
804 |
+
border: 3px solid transparent !important;
|
805 |
+
background: linear-gradient(white, white) padding-box,
|
806 |
+
linear-gradient(135deg, #667eea, #764ba2) border-box !important;
|
807 |
+
border-radius: 16px !important;
|
808 |
+
transition: all 0.3s ease !important;
|
809 |
+
height: 400px !important;
|
810 |
+
width: 100% !important;
|
811 |
+
}
|
812 |
+
|
813 |
+
.zero-analysis-image:hover {
|
814 |
+
transform: scale(1.02) !important;
|
815 |
+
box-shadow: 0 12px 35px rgba(102, 126, 234, 0.2) !important;
|
816 |
+
}
|
817 |
+
|
818 |
+
/* 确保所有行的组件等高 */
|
819 |
+
.gr-row .gr-group {
|
820 |
+
min-height: 100% !important;
|
821 |
+
display: flex !important;
|
822 |
+
flex-direction: column !important;
|
823 |
+
}
|
824 |
+
|
825 |
+
.gr-row .gr-column {
|
826 |
+
height: 100% !important;
|
827 |
+
}
|
828 |
+
|
829 |
+
/* 统计信息卡片美化 */
|
830 |
+
.gr-textbox[label*="Count"] {
|
831 |
+
background: linear-gradient(135deg, #ecfcff 0%, #cffafe 100%) !important;
|
832 |
+
border: 2px solid #06b6d4 !important;
|
833 |
+
font-size: 1.2rem !important;
|
834 |
+
font-weight: 700 !important;
|
835 |
+
text-align: center !important;
|
836 |
+
color: #0e7490 !important;
|
837 |
}
|
838 |
|
839 |
/* 示例区域美化 */
|
840 |
.gr-examples {
|
841 |
+
background: linear-gradient(135deg, rgba(255,255,255,0.9) 0%, rgba(248,250,252,0.9) 100%) !important;
|
842 |
+
backdrop-filter: blur(10px) !important;
|
843 |
+
border-radius: 20px !important;
|
844 |
+
padding: 30px !important;
|
845 |
+
margin-top: 30px !important;
|
846 |
+
border: 1px solid rgba(255, 255, 255, 0.2) !important;
|
847 |
+
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1) !important;
|
848 |
}
|
849 |
|
850 |
+
/* Accordion 美化 */
|
851 |
+
.gr-accordion {
|
852 |
+
background: rgba(255, 255, 255, 0.8) !important;
|
853 |
+
border-radius: 16px !important;
|
854 |
+
margin: 16px 0 !important;
|
855 |
+
border: 1px solid rgba(255, 255, 255, 0.2) !important;
|
856 |
+
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.08) !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
857 |
}
|
858 |
|
859 |
+
/* 响应式设计 - 移除旧的媒体查询,已在上方重新定义 */
|
860 |
+
|
861 |
/* 加载动画 */
|
862 |
@keyframes pulse {
|
863 |
0%, 100% { opacity: 1; }
|
|
|
902 |
Choose from different model variants: **ZIP-B** (Base), **ZIP-S** (Small), **ZIP-T** (Tiny), **ZIP-N** (Nano), **ZIP-P** (Pico)
|
903 |
""")
|
904 |
|
905 |
+
# 第二行:模型配置区域(2/3宽度)和预测结果(1/3宽度)
|
906 |
with gr.Row():
|
907 |
+
with gr.Column(scale=2):
|
|
|
908 |
with gr.Group():
|
909 |
gr.Markdown("### 🤖 Model Configuration")
|
910 |
+
with gr.Row():
|
911 |
+
with gr.Column(scale=1):
|
912 |
+
model_dropdown = gr.Dropdown(
|
913 |
+
choices=pretrained_models,
|
914 |
+
value="ZIP-B @ NWPU-Crowd @ MAE",
|
915 |
+
label="🎛️ Select Model & Dataset",
|
916 |
+
info="Choose model variant, dataset, and evaluation metric"
|
917 |
+
)
|
918 |
+
|
919 |
+
with gr.Column(scale=1):
|
920 |
+
model_status = gr.Textbox(
|
921 |
+
label="📊 Model Status",
|
922 |
+
value="🔄 No model loaded",
|
923 |
+
interactive=False,
|
924 |
+
elem_classes=["status-display"],
|
925 |
+
lines=3
|
926 |
+
)
|
927 |
+
|
928 |
+
with gr.Column(scale=1):
|
929 |
+
with gr.Group():
|
930 |
+
gr.Markdown("### 🧙 Predicted Count")
|
931 |
+
output_text = gr.Textbox(
|
932 |
+
label="Result",
|
933 |
+
value="",
|
934 |
interactive=False,
|
935 |
+
info="Total number of people detected",
|
936 |
+
lines=3
|
937 |
)
|
938 |
+
|
939 |
+
# 第三行:主要图像(输入图像、密度图、Lambda图)
|
940 |
+
with gr.Row():
|
941 |
+
with gr.Column(scale=1):
|
942 |
with gr.Group():
|
943 |
gr.Markdown("### 📸 Image Input")
|
944 |
input_img = gr.Image(
|
|
|
952 |
variant="primary",
|
953 |
size="lg"
|
954 |
)
|
955 |
+
|
956 |
with gr.Column(scale=1):
|
957 |
with gr.Group():
|
958 |
gr.Markdown("### 📊 Main Results")
|
959 |
+
output_den_map = gr.Image(
|
960 |
+
label="🎯 Predicted Density Map",
|
961 |
+
type="pil",
|
962 |
+
height=400
|
963 |
)
|
964 |
+
|
965 |
with gr.Column(scale=1):
|
966 |
with gr.Group():
|
967 |
gr.Markdown("### 🔥 Hotspots")
|
968 |
+
output_lambda_map = gr.Image(
|
969 |
+
label="📈 Lambda Map",
|
970 |
+
type="pil",
|
971 |
+
height=400
|
972 |
+
)
|
973 |
|
974 |
+
# 第四行:Zero Analysis - 全宽,内部三列等宽
|
975 |
+
with gr.Group():
|
976 |
+
gr.Markdown("### 🔍 Zero Analysis")
|
977 |
+
gr.Markdown("*Explore different types of zero predictions in crowd analysis*")
|
978 |
+
with gr.Row():
|
979 |
+
with gr.Column(scale=1):
|
980 |
+
output_structural_zero_map = gr.Image(
|
981 |
+
label="🏗️ Structural Zero Map",
|
982 |
+
type="pil",
|
983 |
+
height=400,
|
984 |
+
elem_classes=["zero-analysis-image"]
|
985 |
+
)
|
986 |
+
|
987 |
+
with gr.Column(scale=1):
|
988 |
+
output_sampling_zero_map = gr.Image(
|
989 |
+
label="📊 Sampling Zero Map",
|
990 |
+
type="pil",
|
991 |
+
height=400,
|
992 |
+
elem_classes=["zero-analysis-image"]
|
993 |
+
)
|
994 |
+
|
995 |
+
with gr.Column(scale=1):
|
996 |
+
output_complete_zero_map = gr.Image(
|
997 |
+
label="👺 Complete Zero Map",
|
998 |
+
type="pil",
|
999 |
+
height=400,
|
1000 |
+
elem_classes=["zero-analysis-image"]
|
1001 |
+
)
|
1002 |
|
1003 |
# 当模型变化时,自动更新模型
|
1004 |
def on_model_change(variant_dataset_metric):
|
|
|
1059 |
|
1060 |
**📊 Main Results:**
|
1061 |
- **🎯 Density Map**: Shows where people are located with color intensity, modeled by (1-π) * λ
|
1062 |
+
- **🧙 Predicted Count**: Total number of people detected in the image
|
1063 |
|
1064 |
**🔍 Zero Analysis:**
|
1065 |
- **🏗️ Structural Zero Map**: Indicates regions that structurally cannot contain head annotations (e.g., walls, sky, torso, or background). These are governed by the π head, which estimates the probability that a region never contains people.
|
1066 |
- **📊 Sampling Zero Map**: Shows areas where people could be present but happen not to appear in the current image. These zeros are modeled by (1-π) * exp(-λ), where the expected count λ is near zero.
|
1067 |
+
- **👺 Complete Zero Map**: A combined visualization of zero probabilities, capturing both structural and sampling zeros. This map reflects overall non-crowd likelihood per region.
|
1068 |
|
1069 |
**🔥 Hotspots:**
|
1070 |
- **📈 Lambda Map**: Highlights areas with high expected crowd density. Each value represents the expected number of people in that region, modeled by the Poisson intensity (λ). This map focuses on *how many* people are likely to be present, **WITHOUT** assuming people could appear there. ⚠️ Lambda Map **NEEDS** to be combined with Structural Zero Map by (1-π) * λ to produce the final density map.
|