Spaces:
Running
on
Zero
Running
on
Zero
2025-08-01 10:49 π
Browse files- app.py +5 -5
- models/__init__.py +0 -29
- models/clip_ebc/convnext.py +2 -64
- models/clip_ebc/mobileclip.py +1 -69
- models/clip_ebc/model.py +0 -42
- models/clip_ebc/resnet.py +2 -87
- models/clip_ebc/vit.py +8 -53
- requirements.txt +0 -1
app.py
CHANGED
@@ -791,7 +791,7 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), title="ZIP Crowd Counting") as d
|
|
791 |
gr.Markdown("""
|
792 |
### Step-by-step Guide:
|
793 |
|
794 |
-
1. **ποΈ Select Model**: Choose your preferred model variant, pre-
|
795 |
2. **πΈ Upload Image**: Click the image area to upload your crowd photo or use clipboard
|
796 |
3. **π Analyze**: Click the "Analyze Crowd" button to start processing
|
797 |
4. **π View Results**: Examine the density maps and crowd count in the output panels
|
@@ -821,20 +821,20 @@ with gr.Blocks(css=css, theme=gr.themes.Soft(), title="ZIP Crowd Counting") as d
|
|
821 |
- **ZIP-N**: Nano model for mobile applications
|
822 |
- **ZIP-P**: Pico model for edge devices
|
823 |
|
824 |
-
### Datasets:
|
825 |
- **ShanghaiTech A**: Dense, low-resolution crowd scenes
|
826 |
- **ShanghaiTech B**: Sparse, high-resolution crowd scenes
|
827 |
- **UCF-QNRF**: Dense, ultra high-resolution crowd images
|
828 |
- **NWPU-Crowd**: Largest ultra high-resolution crowd counting dataset
|
829 |
|
830 |
-
### Metrics:
|
831 |
-
- **MAE**: Mean Absolute Error - average counting error
|
832 |
- **NAE**: Normalized Absolute Error - relative counting error
|
833 |
""")
|
834 |
|
835 |
demo.launch(
|
836 |
server_name="0.0.0.0",
|
837 |
-
server_port=
|
838 |
show_api=False,
|
839 |
share=False
|
840 |
)
|
|
|
791 |
gr.Markdown("""
|
792 |
### Step-by-step Guide:
|
793 |
|
794 |
+
1. **ποΈ Select Model**: Choose your preferred model variant, pre-training dataset, and pre-training evaluation metric from the dropdown
|
795 |
2. **πΈ Upload Image**: Click the image area to upload your crowd photo or use clipboard
|
796 |
3. **π Analyze**: Click the "Analyze Crowd" button to start processing
|
797 |
4. **π View Results**: Examine the density maps and crowd count in the output panels
|
|
|
821 |
- **ZIP-N**: Nano model for mobile applications
|
822 |
- **ZIP-P**: Pico model for edge devices
|
823 |
|
824 |
+
### Pre-trainining Datasets:
|
825 |
- **ShanghaiTech A**: Dense, low-resolution crowd scenes
|
826 |
- **ShanghaiTech B**: Sparse, high-resolution crowd scenes
|
827 |
- **UCF-QNRF**: Dense, ultra high-resolution crowd images
|
828 |
- **NWPU-Crowd**: Largest ultra high-resolution crowd counting dataset
|
829 |
|
830 |
+
### Pre-trainining Evaluation Metrics:
|
831 |
+
- **MAE**: Mean Absolute Error - average counting error.
|
832 |
- **NAE**: Normalized Absolute Error - relative counting error
|
833 |
""")
|
834 |
|
835 |
demo.launch(
|
836 |
server_name="0.0.0.0",
|
837 |
+
server_port=7861,
|
838 |
show_api=False,
|
839 |
share=False
|
840 |
)
|
models/__init__.py
CHANGED
@@ -17,12 +17,6 @@ def get_model(
|
|
17 |
num_vpt: Optional[int] = None,
|
18 |
vpt_drop: Optional[float] = None,
|
19 |
input_size: Optional[int] = None,
|
20 |
-
adapter: bool = False,
|
21 |
-
adapter_reduction: Optional[int] = None,
|
22 |
-
lora: bool = False,
|
23 |
-
lora_rank: Optional[int] = None,
|
24 |
-
lora_alpha: Optional[int] = None,
|
25 |
-
lora_dropout: Optional[float] = None,
|
26 |
norm: str = "none",
|
27 |
act: str = "none",
|
28 |
text_prompts: Optional[List[str]] = None
|
@@ -41,15 +35,6 @@ def get_model(
|
|
41 |
num_vpt = model_info["config"].get("num_vpt", None)
|
42 |
vpt_drop = model_info["config"].get("vpt_drop", None)
|
43 |
|
44 |
-
|
45 |
-
adapter = model_info["config"].get("adapter", False)
|
46 |
-
adapter_reduction = model_info["config"].get("adapter_reduction", None)
|
47 |
-
|
48 |
-
lora = model_info["config"].get("lora", False)
|
49 |
-
lora_rank = model_info["config"].get("lora_rank", None)
|
50 |
-
lora_alpha = model_info["config"].get("lora_alpha", None)
|
51 |
-
lora_dropout = model_info["config"].get("lora_dropout", None)
|
52 |
-
|
53 |
input_size = model_info["config"].get("input_size", None)
|
54 |
text_prompts = model_info["config"].get("text_prompts", None)
|
55 |
|
@@ -81,12 +66,6 @@ def get_model(
|
|
81 |
num_vpt=num_vpt,
|
82 |
vpt_drop=vpt_drop,
|
83 |
input_size=input_size,
|
84 |
-
adapter=adapter,
|
85 |
-
adapter_reduction=adapter_reduction,
|
86 |
-
lora=lora,
|
87 |
-
lora_rank=lora_rank,
|
88 |
-
lora_alpha=lora_alpha,
|
89 |
-
lora_dropout=lora_dropout,
|
90 |
text_prompts=text_prompts,
|
91 |
norm=norm,
|
92 |
act=act
|
@@ -101,20 +80,12 @@ def get_model(
|
|
101 |
"num_vpt": num_vpt,
|
102 |
"vpt_drop": vpt_drop,
|
103 |
"input_size": input_size,
|
104 |
-
"adapter": adapter,
|
105 |
-
"adapter_reduction": adapter_reduction,
|
106 |
-
"lora": lora,
|
107 |
-
"lora_rank": lora_rank,
|
108 |
-
"lora_alpha": lora_alpha,
|
109 |
-
"lora_dropout": lora_dropout,
|
110 |
"text_prompts": model.text_prompts,
|
111 |
"norm": norm,
|
112 |
"act": act
|
113 |
}
|
114 |
|
115 |
else:
|
116 |
-
assert not adapter, "adapter for non-CLIP models is not implemented yet"
|
117 |
-
assert not lora, "lora for non-CLIP models is not implemented yet"
|
118 |
model = _ebc(
|
119 |
model_name=model_name,
|
120 |
block_size=block_size,
|
|
|
17 |
num_vpt: Optional[int] = None,
|
18 |
vpt_drop: Optional[float] = None,
|
19 |
input_size: Optional[int] = None,
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
norm: str = "none",
|
21 |
act: str = "none",
|
22 |
text_prompts: Optional[List[str]] = None
|
|
|
35 |
num_vpt = model_info["config"].get("num_vpt", None)
|
36 |
vpt_drop = model_info["config"].get("vpt_drop", None)
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
input_size = model_info["config"].get("input_size", None)
|
39 |
text_prompts = model_info["config"].get("text_prompts", None)
|
40 |
|
|
|
66 |
num_vpt=num_vpt,
|
67 |
vpt_drop=vpt_drop,
|
68 |
input_size=input_size,
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
text_prompts=text_prompts,
|
70 |
norm=norm,
|
71 |
act=act
|
|
|
80 |
"num_vpt": num_vpt,
|
81 |
"vpt_drop": vpt_drop,
|
82 |
"input_size": input_size,
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
"text_prompts": model.text_prompts,
|
84 |
"norm": norm,
|
85 |
"act": act
|
86 |
}
|
87 |
|
88 |
else:
|
|
|
|
|
89 |
model = _ebc(
|
90 |
model_name=model_name,
|
91 |
block_size=block_size,
|
models/clip_ebc/convnext.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
from torch import nn, Tensor
|
2 |
import open_clip
|
3 |
-
from peft import get_peft_model, LoraConfig
|
4 |
|
5 |
-
from ..utils import ConvRefine
|
6 |
from ..utils import ConvUpsample, _get_norm_layer, _get_activation
|
7 |
|
8 |
|
@@ -41,8 +40,6 @@ class ConvNeXt(nn.Module):
|
|
41 |
model_name: str,
|
42 |
weight_name: str,
|
43 |
block_size: int = 16,
|
44 |
-
adapter: bool = False,
|
45 |
-
adapter_reduction: int = 4,
|
46 |
norm: str = "none",
|
47 |
act: str = "none"
|
48 |
) -> None:
|
@@ -55,22 +52,11 @@ class ConvNeXt(nn.Module):
|
|
55 |
|
56 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
57 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
58 |
-
|
59 |
-
self.adapter = adapter
|
60 |
-
if adapter:
|
61 |
-
self.adapter_reduction = adapter_reduction
|
62 |
-
for param in model.parameters():
|
63 |
-
param.requires_grad = False
|
64 |
|
65 |
self.stem = model.trunk.stem
|
66 |
self.depth = len(model.trunk.stages)
|
67 |
for idx, stage in enumerate(model.trunk.stages):
|
68 |
setattr(self, f"stage{idx}", stage)
|
69 |
-
if adapter:
|
70 |
-
setattr(self, f"adapter{idx}", ConvAdapter(
|
71 |
-
in_channels=stage.blocks[-1].mlp.fc2.out_features,
|
72 |
-
bottleneck_channels=stage.blocks[-1].mlp.fc2.out_features // adapter_reduction,
|
73 |
-
) if idx < self.depth - 1 else nn.Identity()) # No adapter for the last stage
|
74 |
|
75 |
if self.model_name in ["convnext_base", "convnext_base_w", "convnext_base_w_320", "convnext_xxlarge"]:
|
76 |
self.in_features, self.out_features = model.head.proj.in_features, model.head.proj.out_features
|
@@ -125,30 +111,12 @@ class ConvNeXt(nn.Module):
|
|
125 |
),
|
126 |
)
|
127 |
|
128 |
-
def train(self, mode: bool = True):
|
129 |
-
if self.adapter and mode:
|
130 |
-
# training:
|
131 |
-
self.stem.eval()
|
132 |
-
|
133 |
-
for idx in range(self.depth):
|
134 |
-
getattr(self, f"stage{idx}").eval()
|
135 |
-
getattr(self, f"adapter{idx}").train()
|
136 |
-
|
137 |
-
self.refiner.train()
|
138 |
-
|
139 |
-
else:
|
140 |
-
# evaluation:
|
141 |
-
for module in self.children():
|
142 |
-
module.train(mode)
|
143 |
-
|
144 |
def forward(self, x: Tensor) -> Tensor:
|
145 |
x = self.stem(x)
|
146 |
|
147 |
for idx in range(self.depth):
|
148 |
x = getattr(self, f"stage{idx}")(x)
|
149 |
-
|
150 |
-
x = getattr(self, f"adapter{idx}")(x)
|
151 |
-
|
152 |
x = self.refiner(x)
|
153 |
return x
|
154 |
|
@@ -157,44 +125,14 @@ def _convnext(
|
|
157 |
model_name: str,
|
158 |
weight_name: str,
|
159 |
block_size: int = 16,
|
160 |
-
adapter: bool = False,
|
161 |
-
adapter_reduction: int = 4,
|
162 |
-
lora: bool = False,
|
163 |
-
lora_rank: int = 16,
|
164 |
-
lora_alpha: float = 32.0,
|
165 |
-
lora_dropout: float = 0.1,
|
166 |
norm: str = "none",
|
167 |
act: str = "none"
|
168 |
) -> ConvNeXt:
|
169 |
-
assert not (lora and adapter), "Lora and adapter cannot be used together."
|
170 |
model = ConvNeXt(
|
171 |
model_name=model_name,
|
172 |
weight_name=weight_name,
|
173 |
block_size=block_size,
|
174 |
-
adapter=adapter,
|
175 |
-
adapter_reduction=adapter_reduction,
|
176 |
norm=norm,
|
177 |
act=act
|
178 |
)
|
179 |
-
|
180 |
-
if lora:
|
181 |
-
target_modules = []
|
182 |
-
for name, module in model.named_modules():
|
183 |
-
if isinstance(module, (nn.Linear, nn.Conv2d)) and "refiner" not in name:
|
184 |
-
target_modules.append(name)
|
185 |
-
|
186 |
-
lora_config = LoraConfig(
|
187 |
-
r=lora_rank,
|
188 |
-
lora_alpha=lora_alpha,
|
189 |
-
lora_dropout=lora_dropout,
|
190 |
-
bias="none",
|
191 |
-
target_modules=target_modules,
|
192 |
-
)
|
193 |
-
model = get_peft_model(model, lora_config)
|
194 |
-
|
195 |
-
# Unfreeze refiner
|
196 |
-
for name, module in model.named_modules():
|
197 |
-
if "refiner" in name:
|
198 |
-
module.requires_grad_(True)
|
199 |
-
|
200 |
return model
|
|
|
1 |
from torch import nn, Tensor
|
2 |
import open_clip
|
|
|
3 |
|
4 |
+
from ..utils import ConvRefine
|
5 |
from ..utils import ConvUpsample, _get_norm_layer, _get_activation
|
6 |
|
7 |
|
|
|
40 |
model_name: str,
|
41 |
weight_name: str,
|
42 |
block_size: int = 16,
|
|
|
|
|
43 |
norm: str = "none",
|
44 |
act: str = "none"
|
45 |
) -> None:
|
|
|
52 |
|
53 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
54 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
self.stem = model.trunk.stem
|
57 |
self.depth = len(model.trunk.stages)
|
58 |
for idx, stage in enumerate(model.trunk.stages):
|
59 |
setattr(self, f"stage{idx}", stage)
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
if self.model_name in ["convnext_base", "convnext_base_w", "convnext_base_w_320", "convnext_xxlarge"]:
|
62 |
self.in_features, self.out_features = model.head.proj.in_features, model.head.proj.out_features
|
|
|
111 |
),
|
112 |
)
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
def forward(self, x: Tensor) -> Tensor:
|
115 |
x = self.stem(x)
|
116 |
|
117 |
for idx in range(self.depth):
|
118 |
x = getattr(self, f"stage{idx}")(x)
|
119 |
+
|
|
|
|
|
120 |
x = self.refiner(x)
|
121 |
return x
|
122 |
|
|
|
125 |
model_name: str,
|
126 |
weight_name: str,
|
127 |
block_size: int = 16,
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
norm: str = "none",
|
129 |
act: str = "none"
|
130 |
) -> ConvNeXt:
|
|
|
131 |
model = ConvNeXt(
|
132 |
model_name=model_name,
|
133 |
weight_name=weight_name,
|
134 |
block_size=block_size,
|
|
|
|
|
135 |
norm=norm,
|
136 |
act=act
|
137 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
return model
|
models/clip_ebc/mobileclip.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
from torch import nn, Tensor
|
2 |
import open_clip
|
3 |
-
from peft import get_peft_model, LoraConfig
|
4 |
|
5 |
-
from ..utils import ConvRefine, ConvUpsample
|
6 |
from ..utils import _get_norm_layer, _get_activation
|
7 |
|
8 |
|
@@ -29,8 +28,6 @@ class MobileCLIP(nn.Module):
|
|
29 |
model_name: str,
|
30 |
weight_name: str,
|
31 |
block_size: int = 16,
|
32 |
-
adapter: bool = False,
|
33 |
-
adapter_reduction: int = 4,
|
34 |
norm: str = "none",
|
35 |
act: str = "none"
|
36 |
) -> None:
|
@@ -44,21 +41,10 @@ class MobileCLIP(nn.Module):
|
|
44 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
45 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
46 |
|
47 |
-
self.adapter = adapter
|
48 |
-
if adapter:
|
49 |
-
for param in model.parameters():
|
50 |
-
param.requires_grad = False
|
51 |
-
|
52 |
self.stem = model.trunk.stem
|
53 |
self.stages = model.trunk.stages
|
54 |
|
55 |
self.depth = len(model.trunk.stages)
|
56 |
-
for idx, stage in enumerate(model.trunk.stages):
|
57 |
-
if adapter:
|
58 |
-
setattr(self, f"adapter{idx}", ConvAdapter(
|
59 |
-
in_channels=stage.blocks[-1].mlp.fc2.out_channels,
|
60 |
-
bottleneck_channels=stage.blocks[-1].mlp.fc2.out_channels // adapter_reduction,
|
61 |
-
))
|
62 |
|
63 |
self.final_conv = model.trunk.final_conv
|
64 |
|
@@ -114,31 +100,12 @@ class MobileCLIP(nn.Module):
|
|
114 |
groups=refiner_groups[self.model_name],
|
115 |
),
|
116 |
)
|
117 |
-
|
118 |
-
def train(self, mode: bool = True):
|
119 |
-
if self.adapter and mode:
|
120 |
-
# training:
|
121 |
-
self.stem.eval()
|
122 |
-
|
123 |
-
for idx in range(self.depth):
|
124 |
-
getattr(self, f"stage{idx}").eval()
|
125 |
-
getattr(self, f"adapter{idx}").train()
|
126 |
-
|
127 |
-
self.final_conv.eval()
|
128 |
-
self.refiner.train()
|
129 |
-
|
130 |
-
else:
|
131 |
-
# evaluation:
|
132 |
-
for module in self.children():
|
133 |
-
module.train(mode)
|
134 |
|
135 |
def forward(self, x: Tensor) -> Tensor:
|
136 |
x = self.stem(x)
|
137 |
|
138 |
for idx in range(self.depth):
|
139 |
x = self.stages[idx](x)
|
140 |
-
if self.adapter:
|
141 |
-
x = getattr(self, f"adapter{idx}")(x)
|
142 |
|
143 |
x = self.final_conv(x)
|
144 |
|
@@ -150,49 +117,14 @@ def _mobileclip(
|
|
150 |
model_name: str,
|
151 |
weight_name: str,
|
152 |
block_size: int = 16,
|
153 |
-
adapter: bool = False,
|
154 |
-
adapter_reduction: int = 4,
|
155 |
-
lora: bool = False,
|
156 |
-
lora_rank: int = 16,
|
157 |
-
lora_alpha: float = 32.0,
|
158 |
-
lora_dropout: float = 0.1,
|
159 |
norm: str = "none",
|
160 |
act: str = "none"
|
161 |
) -> MobileCLIP:
|
162 |
-
assert not (lora and adapter), "Lora and adapter cannot be used together."
|
163 |
model = MobileCLIP(
|
164 |
model_name=model_name,
|
165 |
weight_name=weight_name,
|
166 |
block_size=block_size,
|
167 |
-
adapter=adapter,
|
168 |
-
adapter_reduction=adapter_reduction,
|
169 |
norm=norm,
|
170 |
act=act
|
171 |
)
|
172 |
-
|
173 |
-
if lora:
|
174 |
-
target_modules = []
|
175 |
-
for name, module in model.named_modules():
|
176 |
-
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
177 |
-
target_modules.append(name)
|
178 |
-
|
179 |
-
lora_config = LoraConfig(
|
180 |
-
r=lora_rank,
|
181 |
-
lora_alpha=lora_alpha,
|
182 |
-
lora_dropout=lora_dropout,
|
183 |
-
bias="none",
|
184 |
-
target_modules=target_modules,
|
185 |
-
)
|
186 |
-
model = get_peft_model(model, lora_config)
|
187 |
-
|
188 |
-
# Unfreeze the BN layers
|
189 |
-
for name, module in model.named_modules() and "refiner" not in name:
|
190 |
-
if isinstance(module, nn.BatchNorm2d):
|
191 |
-
module.requires_grad_(True)
|
192 |
-
|
193 |
-
# Unfreeze refiner
|
194 |
-
for name, module in model.named_modules():
|
195 |
-
if "refiner" in name:
|
196 |
-
module.requires_grad_(True)
|
197 |
-
|
198 |
return model
|
|
|
1 |
from torch import nn, Tensor
|
2 |
import open_clip
|
|
|
3 |
|
4 |
+
from ..utils import ConvRefine, ConvUpsample
|
5 |
from ..utils import _get_norm_layer, _get_activation
|
6 |
|
7 |
|
|
|
28 |
model_name: str,
|
29 |
weight_name: str,
|
30 |
block_size: int = 16,
|
|
|
|
|
31 |
norm: str = "none",
|
32 |
act: str = "none"
|
33 |
) -> None:
|
|
|
41 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
42 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
43 |
|
|
|
|
|
|
|
|
|
|
|
44 |
self.stem = model.trunk.stem
|
45 |
self.stages = model.trunk.stages
|
46 |
|
47 |
self.depth = len(model.trunk.stages)
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
self.final_conv = model.trunk.final_conv
|
50 |
|
|
|
100 |
groups=refiner_groups[self.model_name],
|
101 |
),
|
102 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
def forward(self, x: Tensor) -> Tensor:
|
105 |
x = self.stem(x)
|
106 |
|
107 |
for idx in range(self.depth):
|
108 |
x = self.stages[idx](x)
|
|
|
|
|
109 |
|
110 |
x = self.final_conv(x)
|
111 |
|
|
|
117 |
model_name: str,
|
118 |
weight_name: str,
|
119 |
block_size: int = 16,
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
norm: str = "none",
|
121 |
act: str = "none"
|
122 |
) -> MobileCLIP:
|
|
|
123 |
model = MobileCLIP(
|
124 |
model_name=model_name,
|
125 |
weight_name=weight_name,
|
126 |
block_size=block_size,
|
|
|
|
|
127 |
norm=norm,
|
128 |
act=act
|
129 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
return model
|
models/clip_ebc/model.py
CHANGED
@@ -31,12 +31,6 @@ class CLIP_EBC(nn.Module):
|
|
31 |
num_vpt: Optional[int] = None,
|
32 |
vpt_drop: Optional[float] = None,
|
33 |
input_size: Optional[int] = None,
|
34 |
-
adapter: Optional[bool] = False,
|
35 |
-
adapter_reduction: Optional[int] = None,
|
36 |
-
lora: Optional[bool] = False,
|
37 |
-
lora_rank: Optional[int] = None,
|
38 |
-
lora_alpha: Optional[float] = None,
|
39 |
-
lora_dropout: Optional[float] = None,
|
40 |
text_prompts: Optional[Dict[str, List[str]]] = None,
|
41 |
norm: Optional[str] = "none",
|
42 |
act: Optional[str] = "none",
|
@@ -70,12 +64,6 @@ class CLIP_EBC(nn.Module):
|
|
70 |
num_vpt=num_vpt,
|
71 |
vpt_drop=vpt_drop,
|
72 |
block_size=block_size,
|
73 |
-
adapter=adapter,
|
74 |
-
adapter_reduction=adapter_reduction,
|
75 |
-
lora=lora,
|
76 |
-
lora_rank=lora_rank,
|
77 |
-
lora_alpha=lora_alpha,
|
78 |
-
lora_dropout=lora_dropout,
|
79 |
input_size=(input_size, input_size),
|
80 |
norm=norm,
|
81 |
act=act
|
@@ -85,12 +73,6 @@ class CLIP_EBC(nn.Module):
|
|
85 |
model_name=model_name,
|
86 |
weight_name=weight_name,
|
87 |
block_size=block_size,
|
88 |
-
adapter=adapter,
|
89 |
-
adapter_reduction=adapter_reduction,
|
90 |
-
lora=lora,
|
91 |
-
lora_rank=lora_rank,
|
92 |
-
lora_alpha=lora_alpha,
|
93 |
-
lora_dropout=lora_dropout,
|
94 |
norm=norm,
|
95 |
act=act
|
96 |
)
|
@@ -99,12 +81,6 @@ class CLIP_EBC(nn.Module):
|
|
99 |
model_name=model_name,
|
100 |
weight_name=weight_name,
|
101 |
block_size=block_size,
|
102 |
-
adapter=adapter,
|
103 |
-
adapter_reduction=adapter_reduction,
|
104 |
-
lora=lora,
|
105 |
-
lora_rank=lora_rank,
|
106 |
-
lora_alpha=lora_alpha,
|
107 |
-
lora_dropout=lora_dropout,
|
108 |
norm=norm,
|
109 |
act=act
|
110 |
)
|
@@ -113,12 +89,6 @@ class CLIP_EBC(nn.Module):
|
|
113 |
model_name=model_name,
|
114 |
weight_name=weight_name,
|
115 |
block_size=block_size,
|
116 |
-
adapter=adapter,
|
117 |
-
adapter_reduction=adapter_reduction,
|
118 |
-
lora=lora,
|
119 |
-
lora_rank=lora_rank,
|
120 |
-
lora_alpha=lora_alpha,
|
121 |
-
lora_dropout=lora_dropout,
|
122 |
norm=norm,
|
123 |
act=act
|
124 |
)
|
@@ -240,12 +210,6 @@ def _clip_ebc(
|
|
240 |
num_vpt: Optional[int] = None,
|
241 |
vpt_drop: Optional[float] = None,
|
242 |
input_size: Optional[int] = None,
|
243 |
-
adapter: Optional[bool] = False,
|
244 |
-
adapter_reduction: Optional[int] = None,
|
245 |
-
lora: Optional[bool] = False,
|
246 |
-
lora_rank: Optional[int] = None,
|
247 |
-
lora_alpha: Optional[float] = None,
|
248 |
-
lora_dropout: Optional[float] = None,
|
249 |
text_prompts: Optional[List[str]] = None,
|
250 |
norm: Optional[str] = "none",
|
251 |
act: Optional[str] = "none",
|
@@ -260,12 +224,6 @@ def _clip_ebc(
|
|
260 |
num_vpt=num_vpt,
|
261 |
vpt_drop=vpt_drop,
|
262 |
input_size=input_size,
|
263 |
-
adapter=adapter,
|
264 |
-
adapter_reduction=adapter_reduction,
|
265 |
-
lora=lora,
|
266 |
-
lora_rank=lora_rank,
|
267 |
-
lora_alpha=lora_alpha,
|
268 |
-
lora_dropout=lora_dropout,
|
269 |
text_prompts=text_prompts,
|
270 |
norm=norm,
|
271 |
act=act,
|
|
|
31 |
num_vpt: Optional[int] = None,
|
32 |
vpt_drop: Optional[float] = None,
|
33 |
input_size: Optional[int] = None,
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
text_prompts: Optional[Dict[str, List[str]]] = None,
|
35 |
norm: Optional[str] = "none",
|
36 |
act: Optional[str] = "none",
|
|
|
64 |
num_vpt=num_vpt,
|
65 |
vpt_drop=vpt_drop,
|
66 |
block_size=block_size,
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
input_size=(input_size, input_size),
|
68 |
norm=norm,
|
69 |
act=act
|
|
|
73 |
model_name=model_name,
|
74 |
weight_name=weight_name,
|
75 |
block_size=block_size,
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
norm=norm,
|
77 |
act=act
|
78 |
)
|
|
|
81 |
model_name=model_name,
|
82 |
weight_name=weight_name,
|
83 |
block_size=block_size,
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
norm=norm,
|
85 |
act=act
|
86 |
)
|
|
|
89 |
model_name=model_name,
|
90 |
weight_name=weight_name,
|
91 |
block_size=block_size,
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
norm=norm,
|
93 |
act=act
|
94 |
)
|
|
|
210 |
num_vpt: Optional[int] = None,
|
211 |
vpt_drop: Optional[float] = None,
|
212 |
input_size: Optional[int] = None,
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
text_prompts: Optional[List[str]] = None,
|
214 |
norm: Optional[str] = "none",
|
215 |
act: Optional[str] = "none",
|
|
|
224 |
num_vpt=num_vpt,
|
225 |
vpt_drop=vpt_drop,
|
226 |
input_size=input_size,
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
text_prompts=text_prompts,
|
228 |
norm=norm,
|
229 |
act=act,
|
models/clip_ebc/resnet.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
from torch import nn, Tensor
|
2 |
import open_clip
|
3 |
-
from peft import get_peft_model, LoraConfig
|
4 |
|
5 |
-
from ..utils import ConvRefine, ConvUpsample
|
6 |
from ..utils import _get_norm_layer, _get_activation
|
7 |
|
8 |
|
@@ -37,8 +36,6 @@ class ResNet(nn.Module):
|
|
37 |
model_name: str,
|
38 |
weight_name: str,
|
39 |
block_size: int = 16,
|
40 |
-
adapter: bool = False,
|
41 |
-
adapter_reduction: int = 4,
|
42 |
norm: str = "none",
|
43 |
act: str = "none"
|
44 |
) -> None:
|
@@ -52,11 +49,6 @@ class ResNet(nn.Module):
|
|
52 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
53 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
54 |
|
55 |
-
self.adapter = adapter
|
56 |
-
if adapter:
|
57 |
-
for param in model.parameters():
|
58 |
-
param.requires_grad = False
|
59 |
-
|
60 |
# Stem
|
61 |
self.conv1 = model.conv1
|
62 |
self.bn1 = model.bn1
|
@@ -73,12 +65,7 @@ class ResNet(nn.Module):
|
|
73 |
# Layers
|
74 |
for idx in range(1, 5):
|
75 |
setattr(self, f"layer{idx}", getattr(model, f"layer{idx}"))
|
76 |
-
|
77 |
-
setattr(self, f"adapter{idx}", ConvAdapter(
|
78 |
-
in_channels=getattr(model, f"layer{idx}")[-1].conv3.out_channels,
|
79 |
-
bottleneck_channels=getattr(model, f"layer{idx}")[-1].conv3.out_channels // adapter_reduction,
|
80 |
-
) if idx < 4 else nn.Identity()) # No adapter for the last layer
|
81 |
-
|
82 |
self.in_features = model.attnpool.c_proj.weight.shape[1]
|
83 |
self.out_features = model.attnpool.c_proj.weight.shape[0]
|
84 |
|
@@ -129,31 +116,6 @@ class ResNet(nn.Module):
|
|
129 |
groups=refiner_groups[self.model_name],
|
130 |
),
|
131 |
)
|
132 |
-
|
133 |
-
def train(self, mode: bool = True):
|
134 |
-
if self.adapter and mode:
|
135 |
-
# training:
|
136 |
-
self.conv1.eval()
|
137 |
-
self.bn1.eval()
|
138 |
-
self.act1.eval()
|
139 |
-
self.conv2.eval()
|
140 |
-
self.bn2.eval()
|
141 |
-
self.act2.eval()
|
142 |
-
self.conv3.eval()
|
143 |
-
self.bn3.eval()
|
144 |
-
self.act3.eval()
|
145 |
-
self.avgpool.eval()
|
146 |
-
|
147 |
-
for idx in range(1, 5):
|
148 |
-
getattr(self, f"layer{idx}").eval()
|
149 |
-
getattr(self, f"adapter{idx}").train()
|
150 |
-
|
151 |
-
self.refiner.train()
|
152 |
-
|
153 |
-
else:
|
154 |
-
# evaluation:
|
155 |
-
for module in self.children():
|
156 |
-
module.train(mode)
|
157 |
|
158 |
def stem(self, x: Tensor) -> Tensor:
|
159 |
x = self.act1(self.bn1(self.conv1(x)))
|
@@ -166,21 +128,9 @@ class ResNet(nn.Module):
|
|
166 |
x = self.stem(x)
|
167 |
|
168 |
x = self.layer1(x)
|
169 |
-
if self.adapter:
|
170 |
-
x = self.adapter1(x)
|
171 |
-
|
172 |
x = self.layer2(x)
|
173 |
-
if self.adapter:
|
174 |
-
x = self.adapter2(x)
|
175 |
-
|
176 |
x = self.layer3(x)
|
177 |
-
if self.adapter:
|
178 |
-
x = self.adapter3(x)
|
179 |
-
|
180 |
x = self.layer4(x)
|
181 |
-
if self.adapter:
|
182 |
-
x = self.adapter4(x)
|
183 |
-
|
184 |
x = self.refiner(x)
|
185 |
return x
|
186 |
|
@@ -189,49 +139,14 @@ def _resnet(
|
|
189 |
model_name: str,
|
190 |
weight_name: str,
|
191 |
block_size: int = 16,
|
192 |
-
adapter: bool = False,
|
193 |
-
adapter_reduction: int = 4,
|
194 |
-
lora: bool = False,
|
195 |
-
lora_rank: int = 16,
|
196 |
-
lora_alpha: float = 32.0,
|
197 |
-
lora_dropout: float = 0.1,
|
198 |
norm: str = "none",
|
199 |
act: str = "none"
|
200 |
) -> ResNet:
|
201 |
-
assert not (lora and adapter), "Lora and adapter cannot be used together."
|
202 |
model = ResNet(
|
203 |
model_name=model_name,
|
204 |
weight_name=weight_name,
|
205 |
block_size=block_size,
|
206 |
-
adapter=adapter,
|
207 |
-
adapter_reduction=adapter_reduction,
|
208 |
norm=norm,
|
209 |
act=act
|
210 |
)
|
211 |
-
|
212 |
-
if lora:
|
213 |
-
target_modules = []
|
214 |
-
for name, module in model.named_modules():
|
215 |
-
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
216 |
-
target_modules.append(name)
|
217 |
-
|
218 |
-
lora_config = LoraConfig(
|
219 |
-
r=lora_rank,
|
220 |
-
lora_alpha=lora_alpha,
|
221 |
-
lora_dropout=lora_dropout,
|
222 |
-
bias="none",
|
223 |
-
target_modules=target_modules,
|
224 |
-
)
|
225 |
-
model = get_peft_model(model, lora_config)
|
226 |
-
|
227 |
-
# Unfreeze BN layers
|
228 |
-
for name, module in model.named_modules():
|
229 |
-
if isinstance(module, nn.BatchNorm2d) and "refiner" not in name:
|
230 |
-
module.requires_grad_(True)
|
231 |
-
|
232 |
-
# Unfreeze refiner
|
233 |
-
for name, module in model.named_modules():
|
234 |
-
if "refiner" in name:
|
235 |
-
module.requires_grad_(True)
|
236 |
-
|
237 |
return model
|
|
|
1 |
from torch import nn, Tensor
|
2 |
import open_clip
|
|
|
3 |
|
4 |
+
from ..utils import ConvRefine, ConvUpsample
|
5 |
from ..utils import _get_norm_layer, _get_activation
|
6 |
|
7 |
|
|
|
36 |
model_name: str,
|
37 |
weight_name: str,
|
38 |
block_size: int = 16,
|
|
|
|
|
39 |
norm: str = "none",
|
40 |
act: str = "none"
|
41 |
) -> None:
|
|
|
49 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
50 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
51 |
|
|
|
|
|
|
|
|
|
|
|
52 |
# Stem
|
53 |
self.conv1 = model.conv1
|
54 |
self.bn1 = model.bn1
|
|
|
65 |
# Layers
|
66 |
for idx in range(1, 5):
|
67 |
setattr(self, f"layer{idx}", getattr(model, f"layer{idx}"))
|
68 |
+
|
|
|
|
|
|
|
|
|
|
|
69 |
self.in_features = model.attnpool.c_proj.weight.shape[1]
|
70 |
self.out_features = model.attnpool.c_proj.weight.shape[0]
|
71 |
|
|
|
116 |
groups=refiner_groups[self.model_name],
|
117 |
),
|
118 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
def stem(self, x: Tensor) -> Tensor:
|
121 |
x = self.act1(self.bn1(self.conv1(x)))
|
|
|
128 |
x = self.stem(x)
|
129 |
|
130 |
x = self.layer1(x)
|
|
|
|
|
|
|
131 |
x = self.layer2(x)
|
|
|
|
|
|
|
132 |
x = self.layer3(x)
|
|
|
|
|
|
|
133 |
x = self.layer4(x)
|
|
|
|
|
|
|
134 |
x = self.refiner(x)
|
135 |
return x
|
136 |
|
|
|
139 |
model_name: str,
|
140 |
weight_name: str,
|
141 |
block_size: int = 16,
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
norm: str = "none",
|
143 |
act: str = "none"
|
144 |
) -> ResNet:
|
|
|
145 |
model = ResNet(
|
146 |
model_name=model_name,
|
147 |
weight_name=weight_name,
|
148 |
block_size=block_size,
|
|
|
|
|
149 |
norm=norm,
|
150 |
act=act
|
151 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
return model
|
models/clip_ebc/vit.py
CHANGED
@@ -3,10 +3,9 @@ from torch import nn, Tensor
|
|
3 |
import math
|
4 |
from einops import rearrange
|
5 |
import open_clip
|
6 |
-
from peft import get_peft_model, LoraConfig
|
7 |
from typing import Optional, Tuple
|
8 |
|
9 |
-
from ..utils import interpolate_pos_embed
|
10 |
# from ..utils import TransformerRefine, TransformerDownsample, TransformerUpsample
|
11 |
from ..utils import ConvRefine, ConvDownsample, ConvUpsample
|
12 |
from ..utils import _get_norm_layer, _get_activation
|
@@ -73,8 +72,6 @@ class ViT(nn.Module):
|
|
73 |
block_size: int = 16,
|
74 |
num_vpt: int = 32,
|
75 |
vpt_drop: float = 0.0,
|
76 |
-
adapter: bool = False,
|
77 |
-
adapter_reduction: int = 4,
|
78 |
input_size: Optional[Tuple[int, int]] = None,
|
79 |
norm: str = "none",
|
80 |
act: str = "none"
|
@@ -82,18 +79,14 @@ class ViT(nn.Module):
|
|
82 |
super(ViT, self).__init__()
|
83 |
assert model_name in vit_names_and_weights, f"Model name should be one of {list(vit_names_and_weights.keys())}, but got {model_name}."
|
84 |
assert weight_name in vit_names_and_weights[model_name], f"Pretrained should be one of {vit_names_and_weights[model_name]}, but got {weight_name}."
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
else:
|
89 |
-
assert num_vpt > 0, f"Number of VPT tokens should be greater than 0, but got {num_vpt}."
|
90 |
-
assert 0.0 <= vpt_drop < 1.0, f"VPT dropout should be in [0.0, 1.0), but got {vpt_drop}."
|
91 |
|
92 |
self.model_name, self.weight_name = model_name, weight_name
|
93 |
self.block_size = block_size
|
94 |
self.num_vpt = num_vpt
|
95 |
self.vpt_drop = vpt_drop
|
96 |
-
self.adapter = adapter
|
97 |
|
98 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
99 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
@@ -119,15 +112,9 @@ class ViT(nn.Module):
|
|
119 |
# Setup VPT tokens
|
120 |
val = math.sqrt(6. / float(3 * self.patch_size[0] + self.embed_dim))
|
121 |
for idx in range(self.num_layers):
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
bottleneck_channels=self.embed_dim // adapter_reduction,
|
126 |
-
))
|
127 |
-
else:
|
128 |
-
setattr(self, f"vpt_{idx}", nn.Parameter(torch.empty(self.num_vpt, self.embed_dim)))
|
129 |
-
nn.init.uniform_(getattr(self, f"vpt_{idx}"), -val, val)
|
130 |
-
setattr(self, f"vpt_drop_{idx}", nn.Dropout(self.vpt_drop))
|
131 |
|
132 |
# Adjust the positional embedding to match the new input size
|
133 |
self._adjust_pos_embed()
|
@@ -299,13 +286,10 @@ class ViT(nn.Module):
|
|
299 |
|
300 |
return x
|
301 |
|
302 |
-
def _forward_adapter(self, x: Tensor, idx: int) -> Tensor:
|
303 |
-
return getattr(self, f"adapter{idx}")(x)
|
304 |
-
|
305 |
def forward_encoder(self, x: Tensor) -> Tensor:
|
306 |
x = self._forward_patch_embed(x)
|
307 |
for idx in range(self.num_layers):
|
308 |
-
x = self.
|
309 |
x = self.ln_post(x)
|
310 |
return x
|
311 |
|
@@ -326,48 +310,19 @@ def _vit(
|
|
326 |
block_size: int = 16,
|
327 |
num_vpt: int = 32,
|
328 |
vpt_drop: float = 0.1,
|
329 |
-
adapter: bool = False,
|
330 |
-
adapter_reduction: int = 4,
|
331 |
-
lora: bool = False,
|
332 |
-
lora_rank: int = 16,
|
333 |
-
lora_alpha: float = 32.0,
|
334 |
-
lora_dropout: float = 0.1,
|
335 |
input_size: Optional[Tuple[int, int]] = None,
|
336 |
norm: str = "none",
|
337 |
act: str = "none"
|
338 |
) -> ViT:
|
339 |
-
assert not (lora and adapter), "LoRA and adapter cannot be used together."
|
340 |
model = ViT(
|
341 |
model_name=model_name,
|
342 |
weight_name=weight_name,
|
343 |
block_size=block_size,
|
344 |
num_vpt=num_vpt,
|
345 |
vpt_drop=vpt_drop,
|
346 |
-
adapter=adapter,
|
347 |
-
adapter_reduction=adapter_reduction,
|
348 |
input_size=input_size,
|
349 |
norm=norm,
|
350 |
act=act
|
351 |
)
|
352 |
|
353 |
-
if lora:
|
354 |
-
target_modules = []
|
355 |
-
for name, module in model.named_modules():
|
356 |
-
if isinstance(module, (nn.Linear, nn.Conv2d, nn.MultiheadAttention)) and "refiner" not in name:
|
357 |
-
target_modules.append(name)
|
358 |
-
|
359 |
-
lora_config = LoraConfig(
|
360 |
-
r=lora_rank,
|
361 |
-
lora_alpha=lora_alpha,
|
362 |
-
lora_dropout=lora_dropout,
|
363 |
-
bias="none",
|
364 |
-
target_modules=target_modules,
|
365 |
-
)
|
366 |
-
model = get_peft_model(model, lora_config)
|
367 |
-
|
368 |
-
# Unfreeze refiner
|
369 |
-
for name, module in model.named_modules():
|
370 |
-
if "refiner" in name:
|
371 |
-
module.requires_grad_(True)
|
372 |
-
|
373 |
return model
|
|
|
3 |
import math
|
4 |
from einops import rearrange
|
5 |
import open_clip
|
|
|
6 |
from typing import Optional, Tuple
|
7 |
|
8 |
+
from ..utils import interpolate_pos_embed
|
9 |
# from ..utils import TransformerRefine, TransformerDownsample, TransformerUpsample
|
10 |
from ..utils import ConvRefine, ConvDownsample, ConvUpsample
|
11 |
from ..utils import _get_norm_layer, _get_activation
|
|
|
72 |
block_size: int = 16,
|
73 |
num_vpt: int = 32,
|
74 |
vpt_drop: float = 0.0,
|
|
|
|
|
75 |
input_size: Optional[Tuple[int, int]] = None,
|
76 |
norm: str = "none",
|
77 |
act: str = "none"
|
|
|
79 |
super(ViT, self).__init__()
|
80 |
assert model_name in vit_names_and_weights, f"Model name should be one of {list(vit_names_and_weights.keys())}, but got {model_name}."
|
81 |
assert weight_name in vit_names_and_weights[model_name], f"Pretrained should be one of {vit_names_and_weights[model_name]}, but got {weight_name}."
|
82 |
+
|
83 |
+
assert num_vpt > 0, f"Number of VPT tokens should be greater than 0, but got {num_vpt}."
|
84 |
+
assert 0.0 <= vpt_drop < 1.0, f"VPT dropout should be in [0.0, 1.0), but got {vpt_drop}."
|
|
|
|
|
|
|
85 |
|
86 |
self.model_name, self.weight_name = model_name, weight_name
|
87 |
self.block_size = block_size
|
88 |
self.num_vpt = num_vpt
|
89 |
self.vpt_drop = vpt_drop
|
|
|
90 |
|
91 |
# model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual
|
92 |
model = open_clip.create_model(model_name=model_name, pretrained=False, load_weights=False).visual
|
|
|
112 |
# Setup VPT tokens
|
113 |
val = math.sqrt(6. / float(3 * self.patch_size[0] + self.embed_dim))
|
114 |
for idx in range(self.num_layers):
|
115 |
+
setattr(self, f"vpt_{idx}", nn.Parameter(torch.empty(self.num_vpt, self.embed_dim)))
|
116 |
+
nn.init.uniform_(getattr(self, f"vpt_{idx}"), -val, val)
|
117 |
+
setattr(self, f"vpt_drop_{idx}", nn.Dropout(self.vpt_drop))
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
# Adjust the positional embedding to match the new input size
|
120 |
self._adjust_pos_embed()
|
|
|
286 |
|
287 |
return x
|
288 |
|
|
|
|
|
|
|
289 |
def forward_encoder(self, x: Tensor) -> Tensor:
|
290 |
x = self._forward_patch_embed(x)
|
291 |
for idx in range(self.num_layers):
|
292 |
+
x = self._forward_vpt(x, idx)
|
293 |
x = self.ln_post(x)
|
294 |
return x
|
295 |
|
|
|
310 |
block_size: int = 16,
|
311 |
num_vpt: int = 32,
|
312 |
vpt_drop: float = 0.1,
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
input_size: Optional[Tuple[int, int]] = None,
|
314 |
norm: str = "none",
|
315 |
act: str = "none"
|
316 |
) -> ViT:
|
|
|
317 |
model = ViT(
|
318 |
model_name=model_name,
|
319 |
weight_name=weight_name,
|
320 |
block_size=block_size,
|
321 |
num_vpt=num_vpt,
|
322 |
vpt_drop=vpt_drop,
|
|
|
|
|
323 |
input_size=input_size,
|
324 |
norm=norm,
|
325 |
act=act
|
326 |
)
|
327 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
return model
|
requirements.txt
CHANGED
@@ -3,7 +3,6 @@ gradio==5.23.1
|
|
3 |
huggingface_hub==0.29.3
|
4 |
matplotlib==3.10.1
|
5 |
numpy==2.2.4
|
6 |
-
peft==0.7.0
|
7 |
Pillow==11.3.0
|
8 |
spaces==0.39.0
|
9 |
timm==1.0.19
|
|
|
3 |
huggingface_hub==0.29.3
|
4 |
matplotlib==3.10.1
|
5 |
numpy==2.2.4
|
|
|
6 |
Pillow==11.3.0
|
7 |
spaces==0.39.0
|
8 |
timm==1.0.19
|