import torch from torch import nn, Tensor import math from einops import rearrange import open_clip from peft import get_peft_model, LoraConfig from typing import Optional, Tuple from ..utils import interpolate_pos_embed, ViTAdapter # from ..utils import TransformerRefine, TransformerDownsample, TransformerUpsample from ..utils import ConvRefine, ConvDownsample, ConvUpsample from ..utils import _get_norm_layer, _get_activation vit_names_and_weights = { "ViT-B-32": [ "openai", "laion400m_e31", "laion400m_e32", "laion2b_e16", "laion2b_s34b_b79k", "datacomp_xl_s13b_b90k", "datacomp_m_s128m_b4k", "datacomp_s_s13m_b4k", "commonpool_m_clip_s128m_b4k", "commonpool_m_laion_s128m_b4k", "commonpool_m_image_s128m_b4k", "commonpool_m_text_s128m_b4k", "commonpool_m_basic_s128m_b4k", "commonpool_m_s128m_b4k", "commonpool_s_clip_s13m_b4k", "commonpool_s_laion_s13m_b4k", "commonpool_s_image_s13m_b4k", "commonpool_s_text_s13m_b4k", "commonpool_s_basic_s13m_b4k", "commonpool_s_s13m_b4k", ], "ViT-B_32-256": ["datacomp_s34b_b86k"], "ViT-B-16": [ "openai", "laion400m_e31", "laion400m_e32", "laion2b_s34b_b88k", "datacomp_xl_s13b_b90k", "datacomp_l_s1b_b8k", "commonpool_l_clip_s1b_b8k", "commonpool_l_laion_s1b_b8k", "commonpool_l_image_s1b_b8k", "commonpool_l_text_s1b_b8k", "commonpool_l_basic_s1b_b8k", "commonpool_l_s1b_b8k", "dfn2b" ], "ViT-L-14": [ "openai", "laion400m_e31", "laion400m_e32", "laion2b_s32b_b82k", "datacomp_xl_s13b_b90k", "commonpool_xl_clip_s13b_b90k", "commonpool_xl_laion_s13b_b90k", "commonpool_xl_s13b_b90k" ], "ViT-L-14-336": ["openai"], "ViT-H-14": ["laion2b_s32b_b79k"], "ViT-g-14": ["laion2b_s12b_b42k", "laion2b_s34b_b88k"], "ViT-bigG-14": ["laion2b_s39b_b160k"], } refiner_channels = { "ViT-B-32": 768, "ViT-B-32-256": 768, "ViT-B-16": 768, "ViT-L-14": 1024, "ViT-L-14-336": 1024, "ViT-H-14": 1280, "ViT-g-14": 1408, "ViT-bigG-14": 1664, } refiner_groups = { "ViT-B-32": 1, "ViT-B-32-256": 1, "ViT-B-16": 1, "ViT-L-14": 1, "ViT-L-14-336": 1, "ViT-H-14": 1, "ViT-g-14": refiner_channels["ViT-g-14"] // 704, # 2 "ViT-bigG-14": refiner_channels["ViT-bigG-14"] // 416, # 4 } class ViT(nn.Module): def __init__( self, model_name: str, weight_name: str, block_size: int = 16, num_vpt: int = 32, vpt_drop: float = 0.0, adapter: bool = False, adapter_reduction: int = 4, input_size: Optional[Tuple[int, int]] = None, norm: str = "none", act: str = "none" ) -> None: super(ViT, self).__init__() assert model_name in vit_names_and_weights, f"Model name should be one of {list(vit_names_and_weights.keys())}, but got {model_name}." assert weight_name in vit_names_and_weights[model_name], f"Pretrained should be one of {vit_names_and_weights[model_name]}, but got {weight_name}." if adapter: assert num_vpt is None or num_vpt == 0, "num_vpt should be None or 0 when using adapter." assert vpt_drop is None or vpt_drop == 0.0, "vpt_drop should be None or 0.0 when using adapter." else: assert num_vpt > 0, f"Number of VPT tokens should be greater than 0, but got {num_vpt}." assert 0.0 <= vpt_drop < 1.0, f"VPT dropout should be in [0.0, 1.0), but got {vpt_drop}." self.model_name, self.weight_name = model_name, weight_name self.block_size = block_size self.num_vpt = num_vpt self.vpt_drop = vpt_drop self.adapter = adapter model = open_clip.create_model_from_pretrained(model_name, weight_name, return_transform=False).visual # Always freeze the parameters of the model for param in model.parameters(): param.requires_grad = False # Setup the model self.input_size = input_size if input_size is not None else model.image_size self.pretrain_size = model.image_size self.patch_size = model.patch_size self.class_embedding = model.class_embedding self.positional_embedding = model.positional_embedding self.embed_dim = model.class_embedding.shape[-1] self.conv1 = model.conv1 self.ln_pre = model.ln_pre self.resblocks = model.transformer.resblocks self.num_layers = len(self.resblocks) self.ln_post = model.ln_post # Setup VPT tokens val = math.sqrt(6. / float(3 * self.patch_size[0] + self.embed_dim)) for idx in range(self.num_layers): if self.adapter: setattr(self, f"adapter{idx}", ViTAdapter( in_channels=self.embed_dim, bottleneck_channels=self.embed_dim // adapter_reduction, )) else: setattr(self, f"vpt_{idx}", nn.Parameter(torch.empty(self.num_vpt, self.embed_dim))) nn.init.uniform_(getattr(self, f"vpt_{idx}"), -val, val) setattr(self, f"vpt_drop_{idx}", nn.Dropout(self.vpt_drop)) # Adjust the positional embedding to match the new input size self._adjust_pos_embed() in_features, out_features = model.proj.shape self.in_features = in_features self.out_features = out_features patch_size = self.patch_size[0] if patch_size in [16, 32]: assert block_size in [8, 16, 32], f"Patch size is 32, but got block size {block_size}." else: # patch_size == 14 assert block_size in [7, 14, 28], f"Patch size is 14, but got block size {block_size}." if norm == "bn": norm_layer = nn.BatchNorm2d elif norm == "ln": norm_layer = nn.LayerNorm else: norm_layer = _get_norm_layer(model) if act == "relu": activation = nn.ReLU(inplace=True) elif act == "gelu": activation = nn.GELU() else: activation = _get_activation(model) if block_size == patch_size: self.refiner = ConvRefine( in_channels=self.in_features, out_channels=self.in_features, norm_layer=norm_layer, activation=activation, groups=refiner_groups[self.model_name], ) elif block_size < patch_size: # upsample if block_size == 8 and patch_size == 32: self.refiner = nn.Sequential( ConvUpsample( in_channels=self.in_features, out_channels=self.in_features, norm_layer=norm_layer, activation=activation, groups=refiner_groups[self.model_name], ), ConvUpsample( in_channels=self.in_features, out_channels=self.in_features, norm_layer=norm_layer, activation=activation, groups=refiner_groups[self.model_name], ), ) else: self.refiner = ConvUpsample( in_channels=self.in_features, out_channels=self.in_features, norm_layer=norm_layer, activation=activation, groups=refiner_groups[self.model_name], ) else: # downsample assert block_size // patch_size == 2, f"Block size {block_size} should be 2 times the patch size {patch_size}." self.refiner = ConvDownsample( in_channels=self.in_features, out_channels=self.in_features, norm_layer=norm_layer, activation=activation, groups=refiner_groups[self.model_name], ) def _adjust_pos_embed(self) -> Tensor: """ Adjust the positional embedding to match the spatial resolution of the feature map. Args: orig_h, orig_w: The original spatial resolution of the image. new_h, new_w: The new spatial resolution of the image. """ self.positional_embedding = nn.Parameter(self._interpolate_pos_embed(self.pretrain_size[0], self.pretrain_size[1], self.input_size[0], self.input_size[1]), requires_grad=False) def _interpolate_pos_embed(self, orig_h: int, orig_w: int, new_h: int, new_w: int) -> Tensor: """ Interpolate the positional embedding to match the spatial resolution of the feature map. Args: orig_h, orig_w: The original spatial resolution of the image. new_h, new_w: The new spatial resolution of the image. """ if (orig_h, orig_w) == (new_h, new_w): return self.positional_embedding orig_h_patches, orig_w_patches = orig_h // self.patch_size[0], orig_w // self.patch_size[1] new_h_patches, new_w_patches = new_h // self.patch_size[0], new_w // self.patch_size[1] class_pos_embed, patch_pos_embed = self.positional_embedding[:1, :], self.positional_embedding[1:, :] patch_pos_embed = rearrange(patch_pos_embed, "(h w) d -> d h w", h=orig_h_patches, w=orig_w_patches) patch_pos_embed = interpolate_pos_embed(patch_pos_embed, size=(new_h_patches, new_w_patches)) patch_pos_embed = rearrange(patch_pos_embed, "d h w -> (h w) d") pos_embed = torch.cat((class_pos_embed, patch_pos_embed), dim=0) return pos_embed def train(self, mode: bool = True): if mode: # training: self.conv1.eval() self.ln_pre.eval() self.resblocks.eval() self.ln_post.eval() for idx in range(self.num_layers): getattr(self, f"vpt_drop_{idx}").train() self.refiner.train() else: # evaluation: for module in self.children(): module.train(mode) def _prepare_vpt(self, layer: int, batch_size: int, device: torch.device) -> Tensor: vpt = getattr(self, f"vpt_{layer}").unsqueeze(0).expand(batch_size, -1, -1).to(device) # (batch_size, num_vpt, embed_dim) vpt = getattr(self, f"vpt_drop_{layer}")(vpt) return vpt def _forward_patch_embed(self, x: Tensor) -> Tensor: # This step performs 1) embed x into patches; 2) append the class token; 3) add positional embeddings. assert len(x.shape) == 4, f"Expected input to have shape (batch_size, 3, height, width), but got {x.shape}" batch_size, _, height, width = x.shape # Step 1: Embed x into patches x = self.conv1(x) # Step 2: Append the class token class_embedding = self.class_embedding.expand(batch_size, 1, -1) x = rearrange(x, "b d h w -> b (h w) d") x = torch.cat([class_embedding, x], dim=1) # Step 3: Add positional embeddings pos_embed = self._interpolate_pos_embed(orig_h=self.input_size[0], orig_w=self.input_size[1], new_h=height, new_w=width).expand(batch_size, -1, -1) x = x + pos_embed x = self.ln_pre(x) return x def _forward_vpt(self, x: Tensor, idx: int) -> Tensor: batch_size = x.shape[0] device = x.device # Assemble vpt = self._prepare_vpt(idx, batch_size, device) x = torch.cat([ x[:, :1, :], # class token vpt, x[:, 1:, :] # patches ], dim=1) # Forward x = self.resblocks[idx](x) # Disassemble x = torch.cat([ x[:, :1, :], # class token x[:, 1 + self.num_vpt:, :] # patches ], dim=1) return x def _forward_adapter(self, x: Tensor, idx: int) -> Tensor: return getattr(self, f"adapter{idx}")(x) def forward_encoder(self, x: Tensor) -> Tensor: x = self._forward_patch_embed(x) for idx in range(self.num_layers): x = self._forward_adapter(x, idx) if self.adapter else self._forward_vpt(x, idx) x = self.ln_post(x) return x def forward(self, x: Tensor) -> Tensor: orig_h, orig_w = x.shape[-2:] num_patches_h, num_patches_w = orig_h // self.patch_size[0], orig_w // self.patch_size[1] x = self.forward_encoder(x) x = x[:, 1:, :] # remove the class token x = rearrange(x, "b (h w) d -> b d h w", h=num_patches_h, w=num_patches_w) x = self.refiner(x) return x def _vit( model_name: str, weight_name: str, block_size: int = 16, num_vpt: int = 32, vpt_drop: float = 0.1, adapter: bool = False, adapter_reduction: int = 4, lora: bool = False, lora_rank: int = 16, lora_alpha: float = 32.0, lora_dropout: float = 0.1, input_size: Optional[Tuple[int, int]] = None, norm: str = "none", act: str = "none" ) -> ViT: assert not (lora and adapter), "LoRA and adapter cannot be used together." model = ViT( model_name=model_name, weight_name=weight_name, block_size=block_size, num_vpt=num_vpt, vpt_drop=vpt_drop, adapter=adapter, adapter_reduction=adapter_reduction, input_size=input_size, norm=norm, act=act ) if lora: target_modules = [] for name, module in model.named_modules(): if isinstance(module, (nn.Linear, nn.Conv2d, nn.MultiheadAttention)) and "refiner" not in name: target_modules.append(name) lora_config = LoraConfig( r=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, bias="none", target_modules=target_modules, ) model = get_peft_model(model, lora_config) # Unfreeze refiner for name, module in model.named_modules(): if "refiner" in name: module.requires_grad_(True) return model