from torch import nn, Tensor from torch.hub import load_state_dict_from_url from typing import Optional from .vgg import VGG from .utils import make_vgg_layers, vgg_urls from ..utils import _init_weights, ConvDownsample, _get_activation, _get_norm_layer EPS = 1e-6 encoder_cfg = [64, 64, "M", 128, 128, "M", 256, 256, 256, "M", 512, 512, 512] decoder_cfg = [512, 512, 512, 256, 128] class CSRNet(nn.Module): def __init__( self, model_name: str, block_size: Optional[int] = None, norm: str = "none", act: str = "none" ) -> None: super().__init__() assert model_name in ["vgg16", "vgg16_bn"], f"Model name should be one of ['vgg16', 'vgg16_bn'], but got {model_name}." assert block_size is None or block_size in [8, 16, 32], f"block_size should be one of [8, 16, 32], but got {block_size}." self.model_name = model_name vgg = VGG(make_vgg_layers(encoder_cfg, in_channels=3, batch_norm="bn" in model_name, dilation=1)) vgg.load_state_dict(load_state_dict_from_url(vgg_urls[model_name]), strict=False) self.encoder = vgg.features self.encoder_reduction = 8 self.encoder_channels = 512 self.block_size = block_size if block_size is not None else 8 if norm == "bn": norm_layer = nn.BatchNorm2d elif norm == "ln": norm_layer = nn.LayerNorm else: norm_layer = _get_norm_layer(vgg) if act == "relu": activation = nn.ReLU(inplace=True) elif act == "gelu": activation = nn.GELU() else: activation = _get_activation(vgg) if self.block_size == self.encoder_reduction: self.refiner = nn.Identity() elif self.block_size > self.encoder_reduction: if self.block_size == 32: self.refiner = nn.Sequential( ConvDownsample( in_channels=self.encoder_channels, out_channels=self.encoder_channels, norm_layer=norm_layer, activation=activation, ), ConvDownsample( in_channels=self.encoder_channels, out_channels=self.encoder_channels, norm_layer=norm_layer, activation=activation, ) ) elif self.block_size == 16: self.refiner = ConvDownsample( in_channels=self.encoder_channels, out_channels=self.encoder_channels, norm_layer=norm_layer, activation=activation, ) self.refiner_channels = self.encoder_channels self.refiner_reduction = self.block_size decoder = make_vgg_layers(decoder_cfg, in_channels=512, batch_norm="bn" in model_name, dilation=2) decoder.apply(_init_weights) self.decoder = decoder self.decoder_channels = decoder_cfg[-1] self.decoder_reduction = self.refiner_reduction def encode(self, x: Tensor) -> Tensor: return self.encoder(x) def refine(self, x: Tensor) -> Tensor: return self.refiner(x) def decode(self, x: Tensor) -> Tensor: return self.decoder(x) def forward(self, x: Tensor) -> Tensor: x = self.encode(x) x = self.refine(x) x = self.decode(x) return x def _csrnet(block_size: Optional[int] = None, norm: str = "none", act: str = "none") -> CSRNet: return CSRNet("vgg16", block_size=block_size, norm=norm, act=act) def _csrnet_bn(block_size: Optional[int] = None, norm: str = "none", act: str = "none") -> CSRNet: return CSRNet("vgg16_bn", block_size=block_size, norm=norm, act=act)