import torch from torch import nn, Tensor import torch.nn.functional as F from einops import rearrange from einops.layers.torch import Rearrange from typing import Callable, Optional, Sequence, Tuple, Union, List, List import warnings from .utils import _init_weights, _make_ntuple, _log_api_usage_once def conv3x3( in_channels: int, out_channels: int, stride: int = 1, groups: int = 1, dilation: int = 1, bias: bool = True, ) -> nn.Conv2d: """3x3 convolution with padding""" conv = nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=bias, dilation=dilation, ) conv.apply(_init_weights) return conv def conv1x1( in_channels: int, out_channels: int, stride: int = 1, bias: bool = True, ) -> nn.Conv2d: """1x1 convolution""" conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=bias) conv.apply(_init_weights) return conv class DepthSeparableConv2d(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, padding: int = 0, dilation: int = 1, bias: bool = True, padding_mode: str = "zeros", ) -> None: super().__init__() # Depthwise convolution: one filter per input channel. self.depthwise = nn.Conv2d( in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=in_channels, bias=bias, padding_mode=padding_mode ) # Pointwise convolution: combine the features across channels. self.pointwise = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bias=bias, padding_mode=padding_mode ) self.apply(_init_weights) def forward(self, x: Tensor) -> Tensor: return self.pointwise(self.depthwise(x)) class SEBlock(nn.Module): def __init__(self, channels: int, reduction: int = 16): super().__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channels, channels // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(channels // reduction, channels, bias=False), nn.Sigmoid() ) self.apply(_init_weights) def forward(self, x: Tensor) -> Tensor: B, C, _, _ = x.shape y = self.avg_pool(x).view(B, C) y = self.fc(y).view(B, C, 1, 1) return x * y class BasicBlock(nn.Module): def __init__( self, in_channels: int, out_channels: int, norm_layer: Union[nn.BatchNorm2d, nn.GroupNorm, None] = nn.BatchNorm2d, activation: nn.Module = nn.ReLU(inplace=True), groups: int = 1, ) -> None: super().__init__() assert isinstance(groups, int) and groups > 0, f"Expected groups to be a positive integer, but got {groups}" assert in_channels % groups == 0, f"Expected in_channels to be divisible by groups, but got {in_channels} % {groups}" assert out_channels % groups == 0, f"Expected out_channels to be divisible by groups, but got {out_channels} % {groups}" self.grouped_conv = groups > 1 self.conv1 = conv3x3( in_channels=in_channels, out_channels=out_channels, stride=1, bias=not norm_layer, groups=groups, ) if self.grouped_conv: self.conv1_1x1 = conv1x1(out_channels, out_channels, stride=1, bias=not norm_layer) self.norm1 = norm_layer(out_channels) if norm_layer else nn.Identity() self.act1 = activation self.conv2 = conv3x3( in_channels=out_channels, out_channels=out_channels, stride=1, bias=not norm_layer, groups=groups, ) if self.grouped_conv: self.conv2_1x1 = conv1x1(out_channels, out_channels, stride=1, bias=not norm_layer) self.norm2 = norm_layer(out_channels) if norm_layer else nn.Identity() self.act2 = activation if in_channels != out_channels: self.downsample = nn.Sequential( conv1x1(in_channels, out_channels, stride=1, bias=not norm_layer), norm_layer(out_channels) if norm_layer else nn.Identity(), ) else: self.downsample = nn.Identity() self.apply(_init_weights) def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.conv1_1x1(out) if self.grouped_conv else out out = self.norm1(out) out = self.act1(out) out = self.conv2(out) out = self.conv2_1x1(out) if self.grouped_conv else out out = self.norm2(out) out += self.downsample(identity) out = self.act2(out) return out class LightBasicBlock(nn.Module): def __init__( self, in_channels: int, out_channels: int, norm_layer: Union[nn.BatchNorm2d, nn.GroupNorm, None] = nn.BatchNorm2d, activation: nn.Module = nn.ReLU(inplace=True), ) -> None: super().__init__() self.conv1 = DepthSeparableConv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, bias=not norm_layer, ) self.norm1 = norm_layer(out_channels) if norm_layer else nn.Identity() self.act1 = activation self.conv2 = DepthSeparableConv2d( in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, bias=not norm_layer, ) self.norm2 = norm_layer(out_channels) if norm_layer else nn.Identity() self.act2 = activation if in_channels != out_channels: self.downsample = nn.Sequential( conv1x1(in_channels, out_channels, stride=1, bias=not norm_layer), norm_layer(out_channels) if norm_layer else nn.Identity(), ) else: self.downsample = nn.Identity() self.apply(_init_weights) def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.norm1(out) out = self.act1(out) out = self.conv2(out) out = self.norm2(out) out += self.downsample(identity) out = self.act2(out) return out class Bottleneck(nn.Module): def __init__( self, in_channels: int, out_channels: int, norm_layer: Union[nn.BatchNorm2d, nn.GroupNorm, None] = nn.BatchNorm2d, activation: nn.Module = nn.ReLU(inplace=True), groups: int = 1, base_width: int = 64, expansion: float = 2.0, ) -> None: super().__init__() assert isinstance(groups, int) and groups > 0, f"Expected groups to be a positive integer, but got {groups}" assert expansion > 0, f"Expected expansion to be greater than 0, but got {expansion}" assert base_width > 0, f"Expected base_width to be greater than 0, but got {base_width}" bottleneck_channels = int(in_channels * (base_width / 64.0) * expansion) assert bottleneck_channels % groups == 0, f"Expected bottleneck_channels to be divisible by groups, but got {bottleneck_channels} % {groups}" self.grouped_conv = groups > 1 self.expansion, self.base_width = expansion, base_width self.conv_in = conv1x1(in_channels, bottleneck_channels, stride=1, bias=not norm_layer) self.norm_in = norm_layer(bottleneck_channels) self.act_in = activation self.se_in = SEBlock(bottleneck_channels) if bottleneck_channels > in_channels else nn.Identity() self.conv_block_1 = nn.Sequential( conv3x3( in_channels=bottleneck_channels, out_channels=bottleneck_channels, stride=1, groups=groups, bias=not norm_layer ), conv1x1(bottleneck_channels, bottleneck_channels, stride=1, bias=not norm_layer) if groups > 1 else nn.Identity(), norm_layer(bottleneck_channels) if norm_layer else nn.Identity(), activation, ) self.conv_block_2 = nn.Sequential( conv3x3( in_channels=bottleneck_channels, out_channels=bottleneck_channels, stride=1, groups=groups, bias=not norm_layer ), conv1x1(bottleneck_channels, bottleneck_channels, stride=1, bias=not norm_layer) if groups > 1 else nn.Identity(), norm_layer(bottleneck_channels) if norm_layer else nn.Identity(), activation, ) self.conv_out = conv1x1(bottleneck_channels, out_channels, stride=1, bias=not norm_layer) self.norm_out = norm_layer(out_channels) self.act_out = activation self.se_out = SEBlock(out_channels) if out_channels > bottleneck_channels else nn.Identity() if in_channels != out_channels: self.downsample = nn.Sequential( conv1x1(in_channels, out_channels, stride=1, bias=not norm_layer), norm_layer(out_channels) if norm_layer else nn.Identity(), ) else: self.downsample = nn.Identity() self.apply(_init_weights) def forward(self, x: Tensor) -> Tensor: identity = x # expand out = self.conv_in(x) out = self.norm_in(out) out = self.act_in(out) out = self.se_in(out) # conv out = self.conv_block_1(out) out = self.conv_block_2(out) # reduce out = self.conv_out(out) out = self.norm_out(out) out = self.se_out(out) out += self.downsample(identity) out = self.act_out(out) return out class ConvASPP(nn.Module): def __init__( self, in_channels: int, out_channels: int, dilations: List[int] = [1, 2, 4], norm_layer: Union[nn.BatchNorm2d, nn.GroupNorm, None] = nn.BatchNorm2d, activation: nn.Module = nn.ReLU(inplace=True), groups: int = 1, base_width: int = 64, expansion: float = 2.0, ) -> None: super().__init__() assert isinstance(groups, int) and groups > 0, f"Expected groups to be a positive integer, but got {groups}" assert expansion > 0, f"Expected expansion to be greater than 0, but got {expansion}" assert base_width > 0, f"Expected base_width to be greater than 0, but got {base_width}" bottleneck_channels = int(in_channels * (base_width / 64.0) * expansion) assert bottleneck_channels % groups == 0, f"Expected bottleneck_channels to be divisible by groups, but got {bottleneck_channels} % {groups}" self.expansion, self.base_width = expansion, base_width self.conv_in = conv1x1(in_channels, bottleneck_channels, stride=1, bias=not norm_layer) self.norm_in = norm_layer(bottleneck_channels) self.act_in = activation conv_blocks = [nn.Sequential( conv1x1(bottleneck_channels, bottleneck_channels, stride=1, bias=not norm_layer), norm_layer(bottleneck_channels), activation )] for dilation in dilations: conv_blocks.append(nn.Sequential( conv3x3( in_channels=bottleneck_channels, out_channels=bottleneck_channels, stride=1, groups=groups, dilation=dilation, bias=not norm_layer ), conv1x1(bottleneck_channels, bottleneck_channels, stride=1, bias=not norm_layer) if groups > 1 else nn.Identity(), norm_layer(bottleneck_channels) if norm_layer else nn.Identity(), activation )) self.convs = nn.ModuleList(conv_blocks) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.conv_avg = conv1x1(bottleneck_channels, bottleneck_channels, stride=1, bias=not norm_layer) self.norm_avg = norm_layer(bottleneck_channels) self.act_avg = activation self.se = SEBlock(bottleneck_channels * (len(dilations) + 2)) self.conv_out = conv1x1(bottleneck_channels * (len(dilations) + 2), out_channels, stride=1, bias=not norm_layer) self.norm_out = norm_layer(out_channels) self.act_out = activation if in_channels != out_channels: self.downsample = nn.Sequential( conv1x1(in_channels, out_channels, stride=1, bias=not norm_layer), norm_layer(out_channels) if norm_layer else nn.Identity(), ) else: self.downsample = nn.Identity() self.apply(_init_weights) def forward(self, x: Tensor) -> Tensor: height, width = x.shape[-2:] identity = x # expand out = self.conv_in(x) out = self.norm_in(out) out = self.act_in(out) outs = [] for conv in self.convs: outs.append(conv(out)) avg = self.avgpool(out) avg = self.conv_avg(avg) avg = self.norm_avg(avg) avg = self.act_avg(avg) # (B, C, 1, 1) avg = avg.repeat(1, 1, height, width) outs = torch.cat([*outs, avg], dim=1) # (B, C * (len(dilations) + 2), H, W) outs = self.se(outs) # reduce outs = self.conv_out(outs) outs = self.norm_out(outs) outs += self.downsample(identity) outs = self.act_out(outs) return outs class ViTBlock(nn.Module): def __init__( self, embed_dim: int, num_heads: int = 8, dropout: float = 0.0, mlp_ratio: float = 4.0, ) -> None: super().__init__() assert embed_dim % num_heads == 0, f"Embedding dimension {embed_dim} should be divisible by number of heads {num_heads}" self.embed_dim, self.num_heads = embed_dim, num_heads self.dropout, self.mlp_ratio = dropout, mlp_ratio self.norm1 = nn.LayerNorm(embed_dim) self.attn = nn.MultiheadAttention( embed_dim=embed_dim, num_heads=num_heads, dropout=dropout, batch_first=True ) self.norm2 = nn.LayerNorm(embed_dim) self.mlp = nn.Sequential( nn.Linear(embed_dim, int(embed_dim * mlp_ratio)), nn.GELU(), nn.Dropout(dropout) if dropout > 0 else nn.Identity(), nn.Linear(int(embed_dim * mlp_ratio), embed_dim), nn.Dropout(dropout) if dropout > 0 else nn.Identity() ) self.apply(_init_weights) def forward(self, x: Tensor) -> Tensor: assert len(x.shape) == 3, f"Expected input to have shape (B, N, C), but got {x.shape}" x = x + self.attn(self.norm1(x)) x = x + self.mlp(self.norm2(x)) return x class Conv2dLayerNorm(nn.Sequential): """ Layer normalization applied in a convolutional fashion. """ def __init__(self, dim: int) -> None: super().__init__( Rearrange("B C H W -> B H W C"), nn.LayerNorm(dim), Rearrange("B H W C -> B C H W") ) self.apply(_init_weights) class CvTAttention(nn.Module): def __init__( self, embed_dim: int, num_heads: int = 8, dropout: float = 0.0, q_stride: int = 1, # controls downsampling rate kv_stride: int = 1, ) -> None: super().__init__() assert embed_dim % num_heads == 0, f"Embedding dimension {embed_dim} should be divisible by number of heads {num_heads}" self.embed_dim, self.num_heads, self.dim_head = embed_dim, num_heads, embed_dim // num_heads self.scale = self.dim_head ** -0.5 self.q_stride, self.kv_stride = q_stride, kv_stride self.attend = nn.Softmax(dim=-1) self.dropout = nn.Dropout(dropout) self.to_q = DepthSeparableConv2d( in_channels=embed_dim, out_channels=embed_dim, kernel_size=3, stride=q_stride, padding=1, bias=False ) self.to_k = DepthSeparableConv2d( in_channels=embed_dim, out_channels=embed_dim, kernel_size=3, stride=kv_stride, padding=1, bias=False ) self.to_v = DepthSeparableConv2d( in_channels=embed_dim, out_channels=embed_dim, kernel_size=3, stride=kv_stride, padding=1, bias=False ) self.to_out = nn.Sequential( conv1x1(embed_dim, embed_dim, stride=1), nn.Dropout(dropout) if dropout > 0 else nn.Identity() ) self.apply(_init_weights) def forward(self, x: Tensor) -> Tensor: assert len(x.shape) == 4, f"Expected input to have shape (B, C, H, W), but got {x.shape}" assert x.shape[1] == self.embed_dim, f"Expected input to have embedding dimension {self.embed_dim}, but got {x.shape[1]}" q, k, v = self.to_q(x), self.to_k(x), self.to_v(x) B, _, H, W = q.shape q, k, v = map(lambda t: rearrange(t, "B (num_heads head_dim) H W -> (B num_heads) (H W) head_dim", num_heads=self.num_heads), (q, k, v)) attn = (q @ k.transpose(-2, -1)) * self.scale attn = self.attend(attn) attn = self.dropout(attn) out = attn @ v out = rearrange(out, "(B num_heads) (H W) head_dim -> B (num_heads head_dim) H W", B=B, H=H, W=W, num_heads=self.num_heads) out = self.to_out(out) return out class CvTBlock(nn.Module): """ Implement convolutional vision transformer block. """ def __init__( self, embed_dim: int, num_heads: int = 8, dropout: float = 0.0, mlp_ratio: float = 4.0, q_stride: int = 1, kv_stride: int = 1, ) -> None: super().__init__() assert embed_dim % num_heads == 0, f"Embedding dimension {embed_dim} should be divisible by number of heads {num_heads}." self.embed_dim, self.num_heads = embed_dim, num_heads self.norm1 = Conv2dLayerNorm(embed_dim) self.attn = CvTAttention(embed_dim, num_heads, dropout, q_stride, kv_stride) self.pool = nn.AvgPool2d(kernel_size=q_stride, stride=q_stride) if q_stride > 1 else nn.Identity() self.norm2 = Conv2dLayerNorm(embed_dim) self.mlp = nn.Sequential( nn.Conv2d(embed_dim, int(embed_dim * mlp_ratio), kernel_size=1), nn.GELU(), nn.Dropout(dropout) if dropout > 0 else nn.Identity(), nn.Conv2d(int(embed_dim * mlp_ratio), embed_dim, kernel_size=1), nn.Dropout(dropout) if dropout > 0 else nn.Identity() ) def forward(self, x: Tensor) -> Tensor: x = self.pool(x) + self.attn(self.norm1(x)) x = x + self.mlp(self.norm2(x)) return x class ConvAdapter(nn.Module): def __init__( self, in_channels: int, bottleneck_channels: int = 16, ) -> None: super().__init__() assert in_channels > 0, f"Expected input_channels to be greater than 0, but got {in_channels}" assert bottleneck_channels > 0, f"Expected bottleneck_channels to be greater than 0, but got {bottleneck_channels}" self.adapter = nn.Sequential( nn.Conv2d(in_channels, bottleneck_channels, kernel_size=1), nn.GELU(), nn.Conv2d(bottleneck_channels, in_channels, kernel_size=1), ) nn.init.zeros_(self.adapter[2].weight) nn.init.zeros_(self.adapter[2].bias) def forward(self, x: Tensor) -> Tensor: assert len(x.shape) == 4, f"Expected input to have shape (B, C, H, W), but got {x.shape}" return x + self.adapter(x) class ViTAdapter(nn.Module): def __init__(self, input_dim, bottleneck_dim): super().__init__() self.adapter = nn.Sequential( nn.Linear(input_dim, bottleneck_dim), nn.GELU(), # ViT中常用GELU作为激活函数 nn.Linear(bottleneck_dim, input_dim) ) nn.init.zeros_(self.adapter[2].weight) nn.init.zeros_(self.adapter[2].bias) def forward(self, x: Tensor) -> Tensor: assert len(x.shape) == 3, f"Expected input to have shape (B, N, C), but got {x.shape}" return x + self.adapter(x)