import torch from torch import nn, Tensor from typing import List from einops import rearrange from .blocks import conv3x3, conv1x1, Conv2dLayerNorm, _init_weights class MultiScale(nn.Module): def __init__( self, channels: int, scales: List[int], heads: int = 8, groups: int = 1, mlp_ratio: float = 4.0, ) -> None: super().__init__() assert channels > 0, "channels should be a positive integer" assert isinstance(scales, (list, tuple)) and len(scales) > 0 and all([scale > 0 for scale in scales]), "scales should be a list or tuple of positive integers" assert heads > 0 and channels % heads == 0, "heads should be a positive integer and channels should be divisible by heads" assert groups > 0 and channels % groups == 0, "groups should be a positive integer and channels should be divisible by groups" scales = sorted(scales) self.scales = scales self.num_scales = len(scales) + 1 # +1 for the original feature map self.heads = heads self.groups = groups # modules that generate multi-scale feature maps self.scale_0 = nn.Sequential( conv1x1(channels, channels, stride=1, bias=False), Conv2dLayerNorm(channels), nn.GELU(), ) for scale in scales: setattr(self, f"conv_{scale}", nn.Sequential( conv3x3( in_channels=channels, out_channels=channels, stride=1, groups=groups, dilation=scale, bias=False, ), conv1x1(channels, channels, stride=1, bias=False) if groups > 1 else nn.Identity(), Conv2dLayerNorm(channels), nn.GELU(), )) # modules that fuse multi-scale feature maps self.norm_attn = Conv2dLayerNorm(channels) self.pos_embed = nn.Parameter(torch.randn(1, self.num_scales + 1, channels, 1, 1) / channels ** 0.5) self.to_q = conv1x1(channels, channels, stride=1, bias=False) self.to_k = conv1x1(channels, channels, stride=1, bias=False) self.to_v = conv1x1(channels, channels, stride=1, bias=False) self.scale = (channels // heads) ** -0.5 self.attend = nn.Softmax(dim=-1) self.to_out = conv1x1(channels, channels, stride=1) # modules that refine multi-scale feature maps self.norm_mlp = Conv2dLayerNorm(channels) self.mlp = nn.Sequential( conv1x1(channels, channels * mlp_ratio, stride=1), nn.GELU(), conv1x1(channels * mlp_ratio, channels, stride=1), ) self.apply(_init_weights) def _forward_attn(self, x: Tensor) -> Tensor: assert len(x.shape) == 4, f"Expected input to have shape (B, C, H, W), but got {x.shape}" x = [self.scale_0(x)] + [getattr(self, f"conv_{scale}")(x) for scale in self.scales] x = torch.stack(x, dim=1) # (B, S, C, H, W) x = torch.cat([x.mean(dim=1, keepdim=True), x], dim=1) # (B, S+1, C, H, W) x = x + self.pos_embed # (B, S+1, C, H, W) x = rearrange(x, "B S C H W -> (B S) C H W") # (B*(S+1), C, H, W) x = self.norm_attn(x) # (B*(S+1), C, H, W) x = rearrange(x, "(B S) C H W -> B S C H W", S=self.num_scales + 1) # (B, S+1, C, H, W) q = self.to_q(x[:, 0]) # (B, C, H, W) k = self.to_k(rearrange(x, "B S C H W -> (B S) C H W")) v = self.to_v(rearrange(x, "B S C H W -> (B S) C H W")) q = rearrange(q, "B (h d) H W -> B h H W 1 d", h=self.heads) k = rearrange(k, "(B S) (h d) H W -> B h H W S d", S=self.num_scales + 1, h=self.heads) v = rearrange(v, "(B S) (h d) H W -> B h H W S d", S=self.num_scales + 1, h=self.heads) attn = q @ k.transpose(-2, -1) * self.scale # (B, h, H, W, 1, S+1) attn = self.attend(attn) # (B, h, H, W, 1, S+1) out = attn @ v # (B, h, H, W, 1, d) out = rearrange(out, "B h H W 1 d -> B (h d) H W") # (B, C, H, W) out = self.to_out(out) # (B, C, H, W) return out def _forward_mlp(self, x: Tensor) -> Tensor: assert len(x.shape) == 4, f"Expected input to have shape (B, C, H, W), but got {x.shape}" x = self.norm_mlp(x) x = self.mlp(x) return x def forward(self, x: Tensor) -> Tensor: x = x + self._forward_attn(x) x = x + self._forward_mlp(x) return x