|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from contextlib import nullcontext |
|
|
|
from ..models.embeddings import ( |
|
ImageProjection, |
|
MultiIPAdapterImageProjection, |
|
) |
|
from ..models.modeling_utils import load_model_dict_into_meta |
|
from ..utils import ( |
|
is_accelerate_available, |
|
is_torch_version, |
|
logging, |
|
) |
|
|
|
|
|
if is_accelerate_available(): |
|
pass |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class FluxTransformer2DLoadersMixin: |
|
""" |
|
Load layers into a [`FluxTransformer2DModel`]. |
|
""" |
|
|
|
def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False): |
|
if low_cpu_mem_usage: |
|
if is_accelerate_available(): |
|
from accelerate import init_empty_weights |
|
|
|
else: |
|
low_cpu_mem_usage = False |
|
logger.warning( |
|
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" |
|
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" |
|
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" |
|
" install accelerate\n```\n." |
|
) |
|
|
|
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): |
|
raise NotImplementedError( |
|
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" |
|
" `low_cpu_mem_usage=False`." |
|
) |
|
|
|
updated_state_dict = {} |
|
image_projection = None |
|
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext |
|
|
|
if "proj.weight" in state_dict: |
|
|
|
num_image_text_embeds = 4 |
|
if state_dict["proj.weight"].shape[0] == 65536: |
|
num_image_text_embeds = 16 |
|
clip_embeddings_dim = state_dict["proj.weight"].shape[-1] |
|
cross_attention_dim = state_dict["proj.weight"].shape[0] // num_image_text_embeds |
|
|
|
with init_context(): |
|
image_projection = ImageProjection( |
|
cross_attention_dim=cross_attention_dim, |
|
image_embed_dim=clip_embeddings_dim, |
|
num_image_text_embeds=num_image_text_embeds, |
|
) |
|
|
|
for key, value in state_dict.items(): |
|
diffusers_name = key.replace("proj", "image_embeds") |
|
updated_state_dict[diffusers_name] = value |
|
|
|
if not low_cpu_mem_usage: |
|
image_projection.load_state_dict(updated_state_dict, strict=True) |
|
else: |
|
load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype) |
|
|
|
return image_projection |
|
|
|
def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False): |
|
from ..models.attention_processor import ( |
|
FluxIPAdapterJointAttnProcessor2_0, |
|
) |
|
|
|
if low_cpu_mem_usage: |
|
if is_accelerate_available(): |
|
from accelerate import init_empty_weights |
|
|
|
else: |
|
low_cpu_mem_usage = False |
|
logger.warning( |
|
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" |
|
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" |
|
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" |
|
" install accelerate\n```\n." |
|
) |
|
|
|
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): |
|
raise NotImplementedError( |
|
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" |
|
" `low_cpu_mem_usage=False`." |
|
) |
|
|
|
|
|
attn_procs = {} |
|
key_id = 0 |
|
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext |
|
for name in self.attn_processors.keys(): |
|
if name.startswith("single_transformer_blocks"): |
|
attn_processor_class = self.attn_processors[name].__class__ |
|
attn_procs[name] = attn_processor_class() |
|
else: |
|
cross_attention_dim = self.config.joint_attention_dim |
|
hidden_size = self.inner_dim |
|
attn_processor_class = FluxIPAdapterJointAttnProcessor2_0 |
|
num_image_text_embeds = [] |
|
for state_dict in state_dicts: |
|
if "proj.weight" in state_dict["image_proj"]: |
|
num_image_text_embed = 4 |
|
if state_dict["image_proj"]["proj.weight"].shape[0] == 65536: |
|
num_image_text_embed = 16 |
|
|
|
num_image_text_embeds += [num_image_text_embed] |
|
|
|
with init_context(): |
|
attn_procs[name] = attn_processor_class( |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
scale=1.0, |
|
num_tokens=num_image_text_embeds, |
|
dtype=self.dtype, |
|
device=self.device, |
|
) |
|
|
|
value_dict = {} |
|
for i, state_dict in enumerate(state_dicts): |
|
value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]}) |
|
value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]}) |
|
value_dict.update({f"to_k_ip.{i}.bias": state_dict["ip_adapter"][f"{key_id}.to_k_ip.bias"]}) |
|
value_dict.update({f"to_v_ip.{i}.bias": state_dict["ip_adapter"][f"{key_id}.to_v_ip.bias"]}) |
|
|
|
if not low_cpu_mem_usage: |
|
attn_procs[name].load_state_dict(value_dict) |
|
else: |
|
device = self.device |
|
dtype = self.dtype |
|
load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype) |
|
|
|
key_id += 1 |
|
|
|
return attn_procs |
|
|
|
def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False): |
|
if not isinstance(state_dicts, list): |
|
state_dicts = [state_dicts] |
|
|
|
self.encoder_hid_proj = None |
|
|
|
attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage) |
|
self.set_attn_processor(attn_procs) |
|
|
|
image_projection_layers = [] |
|
for state_dict in state_dicts: |
|
image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers( |
|
state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage |
|
) |
|
image_projection_layers.append(image_projection_layer) |
|
|
|
self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers) |
|
self.config.encoder_hid_dim_type = "ip_image_proj" |
|
|
|
self.to(dtype=self.dtype, device=self.device) |
|
|