|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Dict |
|
|
|
from ..models.attention_processor import SD3IPAdapterJointAttnProcessor2_0 |
|
from ..models.embeddings import IPAdapterTimeImageProjection |
|
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta |
|
|
|
|
|
class SD3Transformer2DLoadersMixin: |
|
"""Load IP-Adapters and LoRA layers into a `[SD3Transformer2DModel]`.""" |
|
|
|
def _load_ip_adapter_weights(self, state_dict: Dict, low_cpu_mem_usage: bool = _LOW_CPU_MEM_USAGE_DEFAULT) -> None: |
|
"""Sets IP-Adapter attention processors, image projection, and loads state_dict. |
|
|
|
Args: |
|
state_dict (`Dict`): |
|
State dict with keys "ip_adapter", which contains parameters for attention processors, and |
|
"image_proj", which contains parameters for image projection net. |
|
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): |
|
Speed up model loading only loading the pretrained weights and not initializing the weights. This also |
|
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. |
|
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this |
|
argument to `True` will raise an error. |
|
""" |
|
|
|
hidden_size = self.config.attention_head_dim * self.config.num_attention_heads |
|
ip_hidden_states_dim = self.config.attention_head_dim * self.config.num_attention_heads |
|
timesteps_emb_dim = state_dict["ip_adapter"]["0.norm_ip.linear.weight"].shape[1] |
|
|
|
|
|
|
|
layer_state_dict = {idx: {} for idx in range(len(self.attn_processors))} |
|
for key, weights in state_dict["ip_adapter"].items(): |
|
idx, name = key.split(".", maxsplit=1) |
|
layer_state_dict[int(idx)][name] = weights |
|
|
|
|
|
attn_procs = {} |
|
for idx, name in enumerate(self.attn_processors.keys()): |
|
attn_procs[name] = SD3IPAdapterJointAttnProcessor2_0( |
|
hidden_size=hidden_size, |
|
ip_hidden_states_dim=ip_hidden_states_dim, |
|
head_dim=self.config.attention_head_dim, |
|
timesteps_emb_dim=timesteps_emb_dim, |
|
).to(self.device, dtype=self.dtype) |
|
|
|
if not low_cpu_mem_usage: |
|
attn_procs[name].load_state_dict(layer_state_dict[idx], strict=True) |
|
else: |
|
load_model_dict_into_meta( |
|
attn_procs[name], layer_state_dict[idx], device=self.device, dtype=self.dtype |
|
) |
|
|
|
self.set_attn_processor(attn_procs) |
|
|
|
|
|
embed_dim = state_dict["image_proj"]["proj_in.weight"].shape[1] |
|
output_dim = state_dict["image_proj"]["proj_out.weight"].shape[0] |
|
hidden_dim = state_dict["image_proj"]["proj_in.weight"].shape[0] |
|
heads = state_dict["image_proj"]["layers.0.attn.to_q.weight"].shape[0] // 64 |
|
num_queries = state_dict["image_proj"]["latents"].shape[1] |
|
timestep_in_dim = state_dict["image_proj"]["time_embedding.linear_1.weight"].shape[1] |
|
|
|
|
|
self.image_proj = IPAdapterTimeImageProjection( |
|
embed_dim=embed_dim, |
|
output_dim=output_dim, |
|
hidden_dim=hidden_dim, |
|
heads=heads, |
|
num_queries=num_queries, |
|
timestep_in_dim=timestep_in_dim, |
|
).to(device=self.device, dtype=self.dtype) |
|
|
|
if not low_cpu_mem_usage: |
|
self.image_proj.load_state_dict(state_dict["image_proj"], strict=True) |
|
else: |
|
load_model_dict_into_meta(self.image_proj, state_dict["image_proj"], device=self.device, dtype=self.dtype) |
|
|