|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextModel, CLIPTokenizer, LlamaModel, LlamaTokenizerFast |
|
|
|
from ...callbacks import MultiPipelineCallbacks, PipelineCallback |
|
from ...loaders import HunyuanVideoLoraLoaderMixin |
|
from ...models import AutoencoderKLHunyuanVideo, HunyuanVideoTransformer3DModel |
|
from ...schedulers import FlowMatchEulerDiscreteScheduler |
|
from ...utils import logging, replace_example_docstring |
|
from ...utils.torch_utils import randn_tensor |
|
from ...video_processor import VideoProcessor |
|
from ..pipeline_utils import DiffusionPipeline |
|
from .pipeline_output import HunyuanVideoPipelineOutput |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```python |
|
>>> import torch |
|
>>> from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel |
|
>>> from diffusers.utils import export_to_video |
|
|
|
>>> model_id = "hunyuanvideo-community/HunyuanVideo" |
|
>>> transformer = HunyuanVideoTransformer3DModel.from_pretrained( |
|
... model_id, subfolder="transformer", torch_dtype=torch.bfloat16 |
|
... ) |
|
>>> pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.float16) |
|
>>> pipe.vae.enable_tiling() |
|
>>> pipe.to("cuda") |
|
|
|
>>> output = pipe( |
|
... prompt="A cat walks on the grass, realistic", |
|
... height=320, |
|
... width=512, |
|
... num_frames=61, |
|
... num_inference_steps=30, |
|
... ).frames[0] |
|
>>> export_to_video(output, "output.mp4", fps=15) |
|
``` |
|
""" |
|
|
|
|
|
DEFAULT_PROMPT_TEMPLATE = { |
|
"template": ( |
|
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: " |
|
"1. The main content and theme of the video." |
|
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects." |
|
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects." |
|
"4. background environment, light, style and atmosphere." |
|
"5. camera angles, movements, and transitions used in the video:<|eot_id|>" |
|
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>" |
|
), |
|
"crop_start": 95, |
|
} |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
r""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
`num_inference_steps` and `sigmas` must be `None`. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class HunyuanVideoPipeline(DiffusionPipeline, HunyuanVideoLoraLoaderMixin): |
|
r""" |
|
Pipeline for text-to-video generation using HunyuanVideo. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
Args: |
|
text_encoder ([`LlamaModel`]): |
|
[Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). |
|
tokenizer (`LlamaTokenizer`): |
|
Tokenizer from [Llava Llama3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). |
|
transformer ([`HunyuanVideoTransformer3DModel`]): |
|
Conditional Transformer to denoise the encoded image latents. |
|
scheduler ([`FlowMatchEulerDiscreteScheduler`]): |
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents. |
|
vae ([`AutoencoderKLHunyuanVideo`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. |
|
text_encoder_2 ([`CLIPTextModel`]): |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer_2 (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" |
|
_callback_tensor_inputs = ["latents", "prompt_embeds"] |
|
|
|
def __init__( |
|
self, |
|
text_encoder: LlamaModel, |
|
tokenizer: LlamaTokenizerFast, |
|
transformer: HunyuanVideoTransformer3DModel, |
|
vae: AutoencoderKLHunyuanVideo, |
|
scheduler: FlowMatchEulerDiscreteScheduler, |
|
text_encoder_2: CLIPTextModel, |
|
tokenizer_2: CLIPTokenizer, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer_2=tokenizer_2, |
|
) |
|
|
|
self.vae_scale_factor_temporal = ( |
|
self.vae.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4 |
|
) |
|
self.vae_scale_factor_spatial = ( |
|
self.vae.spatial_compression_ratio if hasattr(self, "vae") and self.vae is not None else 8 |
|
) |
|
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) |
|
|
|
def _get_llama_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]], |
|
prompt_template: Dict[str, Any], |
|
num_videos_per_prompt: int = 1, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
max_sequence_length: int = 256, |
|
num_hidden_layers_to_skip: int = 2, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
device = device or self._execution_device |
|
dtype = dtype or self.text_encoder.dtype |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
prompt = [prompt_template["template"].format(p) for p in prompt] |
|
|
|
crop_start = prompt_template.get("crop_start", None) |
|
if crop_start is None: |
|
prompt_template_input = self.tokenizer( |
|
prompt_template["template"], |
|
padding="max_length", |
|
return_tensors="pt", |
|
return_length=False, |
|
return_overflowing_tokens=False, |
|
return_attention_mask=False, |
|
) |
|
crop_start = prompt_template_input["input_ids"].shape[-1] |
|
|
|
crop_start -= 2 |
|
|
|
max_sequence_length += crop_start |
|
text_inputs = self.tokenizer( |
|
prompt, |
|
max_length=max_sequence_length, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors="pt", |
|
return_length=False, |
|
return_overflowing_tokens=False, |
|
return_attention_mask=True, |
|
) |
|
text_input_ids = text_inputs.input_ids.to(device=device) |
|
prompt_attention_mask = text_inputs.attention_mask.to(device=device) |
|
|
|
prompt_embeds = self.text_encoder( |
|
input_ids=text_input_ids, |
|
attention_mask=prompt_attention_mask, |
|
output_hidden_states=True, |
|
).hidden_states[-(num_hidden_layers_to_skip + 1)] |
|
prompt_embeds = prompt_embeds.to(dtype=dtype) |
|
|
|
if crop_start is not None and crop_start > 0: |
|
prompt_embeds = prompt_embeds[:, crop_start:] |
|
prompt_attention_mask = prompt_attention_mask[:, crop_start:] |
|
|
|
|
|
_, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) |
|
prompt_attention_mask = prompt_attention_mask.repeat(1, num_videos_per_prompt) |
|
prompt_attention_mask = prompt_attention_mask.view(batch_size * num_videos_per_prompt, seq_len) |
|
|
|
return prompt_embeds, prompt_attention_mask |
|
|
|
def _get_clip_prompt_embeds( |
|
self, |
|
prompt: Union[str, List[str]], |
|
num_videos_per_prompt: int = 1, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
max_sequence_length: int = 77, |
|
) -> torch.Tensor: |
|
device = device or self._execution_device |
|
dtype = dtype or self.text_encoder_2.dtype |
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt |
|
batch_size = len(prompt) |
|
|
|
text_inputs = self.tokenizer_2( |
|
prompt, |
|
padding="max_length", |
|
max_length=max_sequence_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids |
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {max_sequence_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False).pooler_output |
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt) |
|
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, -1) |
|
|
|
return prompt_embeds |
|
|
|
def encode_prompt( |
|
self, |
|
prompt: Union[str, List[str]], |
|
prompt_2: Union[str, List[str]] = None, |
|
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE, |
|
num_videos_per_prompt: int = 1, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
prompt_attention_mask: Optional[torch.Tensor] = None, |
|
device: Optional[torch.device] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
max_sequence_length: int = 256, |
|
): |
|
if prompt_embeds is None: |
|
prompt_embeds, prompt_attention_mask = self._get_llama_prompt_embeds( |
|
prompt, |
|
prompt_template, |
|
num_videos_per_prompt, |
|
device=device, |
|
dtype=dtype, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
if pooled_prompt_embeds is None: |
|
if prompt_2 is None and pooled_prompt_embeds is None: |
|
prompt_2 = prompt |
|
pooled_prompt_embeds = self._get_clip_prompt_embeds( |
|
prompt, |
|
num_videos_per_prompt, |
|
device=device, |
|
dtype=dtype, |
|
max_sequence_length=77, |
|
) |
|
|
|
return prompt_embeds, pooled_prompt_embeds, prompt_attention_mask |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
prompt_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
prompt_template=None, |
|
): |
|
if height % 16 != 0 or width % 16 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): |
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") |
|
|
|
if prompt_template is not None: |
|
if not isinstance(prompt_template, dict): |
|
raise ValueError(f"`prompt_template` has to be of type `dict` but is {type(prompt_template)}") |
|
if "template" not in prompt_template: |
|
raise ValueError( |
|
f"`prompt_template` has to contain a key `template` but only found {prompt_template.keys()}" |
|
) |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size: int, |
|
num_channels_latents: 32, |
|
height: int = 720, |
|
width: int = 1280, |
|
num_frames: int = 129, |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[torch.device] = None, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
if latents is not None: |
|
return latents.to(device=device, dtype=dtype) |
|
|
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
num_frames, |
|
int(height) // self.vae_scale_factor_spatial, |
|
int(width) // self.vae_scale_factor_spatial, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
return latents |
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def attention_kwargs(self): |
|
return self._attention_kwargs |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Union[str, List[str]] = None, |
|
height: int = 720, |
|
width: int = 1280, |
|
num_frames: int = 129, |
|
num_inference_steps: int = 50, |
|
sigmas: List[float] = None, |
|
guidance_scale: float = 6.0, |
|
num_videos_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
prompt_attention_mask: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[ |
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] |
|
] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE, |
|
max_sequence_length: int = 256, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
will be used instead. |
|
height (`int`, defaults to `720`): |
|
The height in pixels of the generated image. |
|
width (`int`, defaults to `1280`): |
|
The width in pixels of the generated image. |
|
num_frames (`int`, defaults to `129`): |
|
The number of frames in the generated video. |
|
num_inference_steps (`int`, defaults to `50`): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in |
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed |
|
will be used. |
|
guidance_scale (`float`, defaults to `6.0`): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. Note that the only available HunyuanVideo model is |
|
CFG-distilled, which means that traditional guidance between unconditional and conditional latent is |
|
not applied. |
|
num_videos_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a plain tuple. |
|
attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): |
|
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of |
|
each denoising step during the inference. with the following arguments: `callback_on_step_end(self: |
|
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a |
|
list of all tensors as specified by `callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~HunyuanVideoPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned, otherwise a `tuple` is returned |
|
where the first element is a list with the generated images and the second element is a list of `bool`s |
|
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. |
|
""" |
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): |
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
prompt_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
prompt_template, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._attention_kwargs = attention_kwargs |
|
self._interrupt = False |
|
|
|
device = self._execution_device |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_template=prompt_template, |
|
num_videos_per_prompt=num_videos_per_prompt, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
prompt_attention_mask=prompt_attention_mask, |
|
device=device, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
transformer_dtype = self.transformer.dtype |
|
prompt_embeds = prompt_embeds.to(transformer_dtype) |
|
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype) |
|
if pooled_prompt_embeds is not None: |
|
pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype) |
|
|
|
|
|
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
sigmas=sigmas, |
|
) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels |
|
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 |
|
latents = self.prepare_latents( |
|
batch_size * num_videos_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
num_latent_frames, |
|
torch.float32, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0 |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
self._num_timesteps = len(timesteps) |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
latent_model_input = latents.to(transformer_dtype) |
|
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype) |
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latent_model_input, |
|
timestep=timestep, |
|
encoder_hidden_states=prompt_embeds, |
|
encoder_attention_mask=prompt_attention_mask, |
|
pooled_projections=pooled_prompt_embeds, |
|
guidance=guidance, |
|
attention_kwargs=attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if not output_type == "latent": |
|
latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor |
|
video = self.vae.decode(latents, return_dict=False)[0] |
|
video = self.video_processor.postprocess_video(video, output_type=output_type) |
|
else: |
|
video = latents |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (video,) |
|
|
|
return HunyuanVideoPipelineOutput(frames=video) |
|
|