|
import inspect |
|
import math |
|
from itertools import repeat |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from packaging import version |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from ...configuration_utils import FrozenDict |
|
from ...image_processor import PipelineImageInput, VaeImageProcessor |
|
from ...loaders import FromSingleFileMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin |
|
from ...models import AutoencoderKL, UNet2DConditionModel |
|
from ...models.attention_processor import Attention, AttnProcessor |
|
from ...models.lora import adjust_lora_scale_text_encoder |
|
from ...pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from ...schedulers import DDIMScheduler, DPMSolverMultistepScheduler |
|
from ...utils import ( |
|
USE_PEFT_BACKEND, |
|
deprecate, |
|
logging, |
|
replace_example_docstring, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from ...utils.torch_utils import randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline |
|
from .pipeline_output import LEditsPPDiffusionPipelineOutput, LEditsPPInversionPipelineOutput |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import PIL |
|
>>> import requests |
|
>>> import torch |
|
>>> from io import BytesIO |
|
|
|
>>> from diffusers import LEditsPPPipelineStableDiffusion |
|
>>> from diffusers.utils import load_image |
|
|
|
>>> pipe = LEditsPPPipelineStableDiffusion.from_pretrained( |
|
... "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> img_url = "https://www.aiml.informatik.tu-darmstadt.de/people/mbrack/cherry_blossom.png" |
|
>>> image = load_image(img_url).convert("RGB") |
|
|
|
>>> _ = pipe.invert(image=image, num_inversion_steps=50, skip=0.1) |
|
|
|
>>> edited_image = pipe( |
|
... editing_prompt=["cherry blossom"], edit_guidance_scale=10.0, edit_threshold=0.75 |
|
... ).images[0] |
|
``` |
|
""" |
|
|
|
|
|
|
|
class LeditsAttentionStore: |
|
@staticmethod |
|
def get_empty_store(): |
|
return {"down_cross": [], "mid_cross": [], "up_cross": [], "down_self": [], "mid_self": [], "up_self": []} |
|
|
|
def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP=False): |
|
|
|
if attn.shape[1] <= self.max_size: |
|
bs = 1 + int(PnP) + editing_prompts |
|
skip = 2 if PnP else 1 |
|
attn = torch.stack(attn.split(self.batch_size)).permute(1, 0, 2, 3) |
|
source_batch_size = int(attn.shape[1] // bs) |
|
self.forward(attn[:, skip * source_batch_size :], is_cross, place_in_unet) |
|
|
|
def forward(self, attn, is_cross: bool, place_in_unet: str): |
|
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" |
|
|
|
self.step_store[key].append(attn) |
|
|
|
def between_steps(self, store_step=True): |
|
if store_step: |
|
if self.average: |
|
if len(self.attention_store) == 0: |
|
self.attention_store = self.step_store |
|
else: |
|
for key in self.attention_store: |
|
for i in range(len(self.attention_store[key])): |
|
self.attention_store[key][i] += self.step_store[key][i] |
|
else: |
|
if len(self.attention_store) == 0: |
|
self.attention_store = [self.step_store] |
|
else: |
|
self.attention_store.append(self.step_store) |
|
|
|
self.cur_step += 1 |
|
self.step_store = self.get_empty_store() |
|
|
|
def get_attention(self, step: int): |
|
if self.average: |
|
attention = { |
|
key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store |
|
} |
|
else: |
|
assert step is not None |
|
attention = self.attention_store[step] |
|
return attention |
|
|
|
def aggregate_attention( |
|
self, attention_maps, prompts, res: Union[int, Tuple[int]], from_where: List[str], is_cross: bool, select: int |
|
): |
|
out = [[] for x in range(self.batch_size)] |
|
if isinstance(res, int): |
|
num_pixels = res**2 |
|
resolution = (res, res) |
|
else: |
|
num_pixels = res[0] * res[1] |
|
resolution = res[:2] |
|
|
|
for location in from_where: |
|
for bs_item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: |
|
for batch, item in enumerate(bs_item): |
|
if item.shape[1] == num_pixels: |
|
cross_maps = item.reshape(len(prompts), -1, *resolution, item.shape[-1])[select] |
|
out[batch].append(cross_maps) |
|
|
|
out = torch.stack([torch.cat(x, dim=0) for x in out]) |
|
|
|
out = out.sum(1) / out.shape[1] |
|
return out |
|
|
|
def __init__(self, average: bool, batch_size=1, max_resolution=16, max_size: int = None): |
|
self.step_store = self.get_empty_store() |
|
self.attention_store = [] |
|
self.cur_step = 0 |
|
self.average = average |
|
self.batch_size = batch_size |
|
if max_size is None: |
|
self.max_size = max_resolution**2 |
|
elif max_size is not None and max_resolution is None: |
|
self.max_size = max_size |
|
else: |
|
raise ValueError("Only allowed to set one of max_resolution or max_size") |
|
|
|
|
|
|
|
class LeditsGaussianSmoothing: |
|
def __init__(self, device): |
|
kernel_size = [3, 3] |
|
sigma = [0.5, 0.5] |
|
|
|
|
|
kernel = 1 |
|
meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) |
|
for size, std, mgrid in zip(kernel_size, sigma, meshgrids): |
|
mean = (size - 1) / 2 |
|
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2)) |
|
|
|
|
|
kernel = kernel / torch.sum(kernel) |
|
|
|
|
|
kernel = kernel.view(1, 1, *kernel.size()) |
|
kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1)) |
|
|
|
self.weight = kernel.to(device) |
|
|
|
def __call__(self, input): |
|
""" |
|
Arguments: |
|
Apply gaussian filter to input. |
|
input (torch.Tensor): Input to apply gaussian filter on. |
|
Returns: |
|
filtered (torch.Tensor): Filtered output. |
|
""" |
|
return F.conv2d(input, weight=self.weight.to(input.dtype)) |
|
|
|
|
|
class LEDITSCrossAttnProcessor: |
|
def __init__(self, attention_store, place_in_unet, pnp, editing_prompts): |
|
self.attnstore = attention_store |
|
self.place_in_unet = place_in_unet |
|
self.editing_prompts = editing_prompts |
|
self.pnp = pnp |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states, |
|
encoder_hidden_states, |
|
attention_mask=None, |
|
temb=None, |
|
): |
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
self.attnstore( |
|
attention_probs, |
|
is_cross=True, |
|
place_in_unet=self.place_in_unet, |
|
editing_prompts=self.editing_prompts, |
|
PnP=self.pnp, |
|
) |
|
|
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
return hidden_states |
|
|
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): |
|
r""" |
|
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on |
|
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are |
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf). |
|
|
|
Args: |
|
noise_cfg (`torch.Tensor`): |
|
The predicted noise tensor for the guided diffusion process. |
|
noise_pred_text (`torch.Tensor`): |
|
The predicted noise tensor for the text-guided diffusion process. |
|
guidance_rescale (`float`, *optional*, defaults to 0.0): |
|
A rescale factor applied to the noise predictions. |
|
|
|
Returns: |
|
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor. |
|
""" |
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) |
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) |
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) |
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg |
|
return noise_cfg |
|
|
|
|
|
class LEditsPPPipelineStableDiffusion( |
|
DiffusionPipeline, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin |
|
): |
|
""" |
|
Pipeline for textual image editing using LEDits++ with Stable Diffusion. |
|
|
|
This model inherits from [`DiffusionPipeline`] and builds on the [`StableDiffusionPipeline`]. Check the superclass |
|
documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular |
|
device, etc.). |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of |
|
[`DPMSolverMultistepScheduler`] or [`DDIMScheduler`]. If any other scheduler is passed it will |
|
automatically be set to [`DPMSolverMultistepScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. |
|
feature_extractor ([`~transformers.CLIPImageProcessor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->unet->vae" |
|
_exclude_from_cpu_offload = ["safety_checker"] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] |
|
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: Union[DDIMScheduler, DPMSolverMultistepScheduler], |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
|
|
if not isinstance(scheduler, DDIMScheduler) and not isinstance(scheduler, DPMSolverMultistepScheduler): |
|
scheduler = DPMSolverMultistepScheduler.from_config( |
|
scheduler.config, algorithm_type="sde-dpmsolver++", solver_order=2 |
|
) |
|
logger.warning( |
|
"This pipeline only supports DDIMScheduler and DPMSolverMultistepScheduler. " |
|
"The scheduler has been changed to DPMSolverMultistepScheduler." |
|
) |
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" |
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " |
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" |
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," |
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" |
|
" file" |
|
) |
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["steps_offset"] = 1 |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." |
|
" `clip_sample` should be set to False in the configuration file. Please make sure to update the" |
|
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" |
|
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" |
|
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" |
|
) |
|
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["clip_sample"] = False |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( |
|
version.parse(unet.config._diffusers_version).base_version |
|
) < version.parse("0.9.0.dev0") |
|
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 |
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: |
|
deprecation_message = ( |
|
"The configuration file of the unet has set the default `sample_size` to smaller than" |
|
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the" |
|
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" |
|
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" |
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" |
|
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" |
|
" in the config might lead to incorrect results in future versions. If you have downloaded this" |
|
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" |
|
" the `unet/config.json` file" |
|
) |
|
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(unet.config) |
|
new_config["sample_size"] = 64 |
|
unet._internal_dict = FrozenDict(new_config) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
self.inversion_steps = None |
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
if torch.is_tensor(image): |
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") |
|
else: |
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
return image, has_nsfw_concept |
|
|
|
|
|
def decode_latents(self, latents): |
|
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" |
|
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
|
|
def prepare_extra_step_kwargs(self, eta, generator=None): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
|
|
def check_inputs( |
|
self, |
|
negative_prompt=None, |
|
editing_prompt_embeddings=None, |
|
negative_prompt_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
): |
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if editing_prompt_embeddings is not None and negative_prompt_embeds is not None: |
|
if editing_prompt_embeddings.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`editing_prompt_embeddings` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `editing_prompt_embeddings` {editing_prompt_embeddings.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, latents): |
|
|
|
|
|
|
|
|
|
|
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def prepare_unet(self, attention_store, PnP: bool = False): |
|
attn_procs = {} |
|
for name in self.unet.attn_processors.keys(): |
|
if name.startswith("mid_block"): |
|
place_in_unet = "mid" |
|
elif name.startswith("up_blocks"): |
|
place_in_unet = "up" |
|
elif name.startswith("down_blocks"): |
|
place_in_unet = "down" |
|
else: |
|
continue |
|
|
|
if "attn2" in name and place_in_unet != "mid": |
|
attn_procs[name] = LEDITSCrossAttnProcessor( |
|
attention_store=attention_store, |
|
place_in_unet=place_in_unet, |
|
pnp=PnP, |
|
editing_prompts=self.enabled_editing_prompts, |
|
) |
|
else: |
|
attn_procs[name] = AttnProcessor() |
|
|
|
self.unet.set_attn_processor(attn_procs) |
|
|
|
def encode_prompt( |
|
self, |
|
device, |
|
num_images_per_prompt, |
|
enable_edit_guidance, |
|
negative_prompt=None, |
|
editing_prompt=None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
editing_prompt_embeds: Optional[torch.Tensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
enable_edit_guidance (`bool`): |
|
whether to perform any editing or reconstruct the input image instead |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
editing_prompt (`str` or `List[str]`, *optional*): |
|
Editing prompt(s) to be encoded. If not defined, one has to pass `editing_prompt_embeds` instead. |
|
editing_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
lora_scale (`float`, *optional*): |
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
|
|
|
|
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
batch_size = self.batch_size |
|
num_edit_tokens = None |
|
|
|
if negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but exoected" |
|
f"{batch_size} based on the input images. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = negative_prompt_embeds.dtype |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
if enable_edit_guidance: |
|
if editing_prompt_embeds is None: |
|
|
|
|
|
|
|
if isinstance(editing_prompt, str): |
|
editing_prompt = [editing_prompt] |
|
|
|
max_length = negative_prompt_embeds.shape[1] |
|
text_inputs = self.tokenizer( |
|
[x for item in editing_prompt for x in repeat(item, batch_size)], |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
return_length=True, |
|
) |
|
|
|
num_edit_tokens = text_inputs.length - 2 |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer( |
|
[x for item in editing_prompt for x in repeat(item, batch_size)], |
|
padding="longest", |
|
return_tensors="pt", |
|
).input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if ( |
|
hasattr(self.text_encoder.config, "use_attention_mask") |
|
and self.text_encoder.config.use_attention_mask |
|
): |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
if clip_skip is None: |
|
editing_prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) |
|
editing_prompt_embeds = editing_prompt_embeds[0] |
|
else: |
|
editing_prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True |
|
) |
|
|
|
|
|
|
|
editing_prompt_embeds = editing_prompt_embeds[-1][-(clip_skip + 1)] |
|
|
|
|
|
|
|
|
|
editing_prompt_embeds = self.text_encoder.text_model.final_layer_norm(editing_prompt_embeds) |
|
|
|
editing_prompt_embeds = editing_prompt_embeds.to(dtype=negative_prompt_embeds.dtype, device=device) |
|
|
|
bs_embed_edit, seq_len, _ = editing_prompt_embeds.shape |
|
editing_prompt_embeds = editing_prompt_embeds.to(dtype=negative_prompt_embeds.dtype, device=device) |
|
editing_prompt_embeds = editing_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
editing_prompt_embeds = editing_prompt_embeds.view(bs_embed_edit * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
return editing_prompt_embeds, negative_prompt_embeds, num_edit_tokens |
|
|
|
@property |
|
def guidance_rescale(self): |
|
return self._guidance_rescale |
|
|
|
@property |
|
def clip_skip(self): |
|
return self._clip_skip |
|
|
|
@property |
|
def cross_attention_kwargs(self): |
|
return self._cross_attention_kwargs |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
editing_prompt: Optional[Union[str, List[str]]] = None, |
|
editing_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
reverse_editing_direction: Optional[Union[bool, List[bool]]] = False, |
|
edit_guidance_scale: Optional[Union[float, List[float]]] = 5, |
|
edit_warmup_steps: Optional[Union[int, List[int]]] = 0, |
|
edit_cooldown_steps: Optional[Union[int, List[int]]] = None, |
|
edit_threshold: Optional[Union[float, List[float]]] = 0.9, |
|
user_mask: Optional[torch.Tensor] = None, |
|
sem_guidance: Optional[List[torch.Tensor]] = None, |
|
use_cross_attn_mask: bool = False, |
|
use_intersect_mask: bool = True, |
|
attn_store_steps: Optional[List[int]] = [], |
|
store_averaged_over_steps: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
r""" |
|
The call function to the pipeline for editing. The |
|
[`~pipelines.ledits_pp.LEditsPPPipelineStableDiffusion.invert`] method has to be called beforehand. Edits will |
|
always be performed for the last inverted image(s). |
|
|
|
Args: |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
generator (`torch.Generator`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] instead of a plain |
|
tuple. |
|
editing_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. The image is reconstructed by setting |
|
`editing_prompt = None`. Guidance direction of prompt should be specified via |
|
`reverse_editing_direction`. |
|
editing_prompt_embeds (`torch.Tensor>`, *optional*): |
|
Pre-computed embeddings to use for guiding the image generation. Guidance direction of embedding should |
|
be specified via `reverse_editing_direction`. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
reverse_editing_direction (`bool` or `List[bool]`, *optional*, defaults to `False`): |
|
Whether the corresponding prompt in `editing_prompt` should be increased or decreased. |
|
edit_guidance_scale (`float` or `List[float]`, *optional*, defaults to 5): |
|
Guidance scale for guiding the image generation. If provided as list values should correspond to |
|
`editing_prompt`. `edit_guidance_scale` is defined as `s_e` of equation 12 of [LEDITS++ |
|
Paper](https://arxiv.org/abs/2301.12247). |
|
edit_warmup_steps (`float` or `List[float]`, *optional*, defaults to 10): |
|
Number of diffusion steps (for each prompt) for which guidance will not be applied. |
|
edit_cooldown_steps (`float` or `List[float]`, *optional*, defaults to `None`): |
|
Number of diffusion steps (for each prompt) after which guidance will no longer be applied. |
|
edit_threshold (`float` or `List[float]`, *optional*, defaults to 0.9): |
|
Masking threshold of guidance. Threshold should be proportional to the image region that is modified. |
|
'edit_threshold' is defined as 'λ' of equation 12 of [LEDITS++ |
|
Paper](https://arxiv.org/abs/2301.12247). |
|
user_mask (`torch.Tensor`, *optional*): |
|
User-provided mask for even better control over the editing process. This is helpful when LEDITS++'s |
|
implicit masks do not meet user preferences. |
|
sem_guidance (`List[torch.Tensor]`, *optional*): |
|
List of pre-generated guidance vectors to be applied at generation. Length of the list has to |
|
correspond to `num_inference_steps`. |
|
use_cross_attn_mask (`bool`, defaults to `False`): |
|
Whether cross-attention masks are used. Cross-attention masks are always used when use_intersect_mask |
|
is set to true. Cross-attention masks are defined as 'M^1' of equation 12 of [LEDITS++ |
|
paper](https://arxiv.org/pdf/2311.16711.pdf). |
|
use_intersect_mask (`bool`, defaults to `True`): |
|
Whether the masking term is calculated as intersection of cross-attention masks and masks derived from |
|
the noise estimate. Cross-attention mask are defined as 'M^1' and masks derived from the noise estimate |
|
are defined as 'M^2' of equation 12 of [LEDITS++ paper](https://arxiv.org/pdf/2311.16711.pdf). |
|
attn_store_steps (`List[int]`, *optional*): |
|
Steps for which the attention maps are stored in the AttentionStore. Just for visualization purposes. |
|
store_averaged_over_steps (`bool`, defaults to `True`): |
|
Whether the attention maps for the 'attn_store_steps' are stored averaged over the diffusion steps. If |
|
False, attention maps for each step are stores separately. Just for visualization purposes. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
guidance_rescale (`float`, *optional*, defaults to 0.0): |
|
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are |
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when |
|
using zero terminal SNR. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.ledits_pp.LEditsPPDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When |
|
returning a tuple, the first element is a list with the generated images, and the second element is a list |
|
of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) |
|
content, according to the `safety_checker`. |
|
""" |
|
|
|
if self.inversion_steps is None: |
|
raise ValueError( |
|
"You need to invert an input image first before calling the pipeline. The `invert` method has to be called beforehand. Edits will always be performed for the last inverted image(s)." |
|
) |
|
|
|
eta = self.eta |
|
num_images_per_prompt = 1 |
|
latents = self.init_latents |
|
|
|
zs = self.zs |
|
self.scheduler.set_timesteps(len(self.scheduler.timesteps)) |
|
|
|
if use_intersect_mask: |
|
use_cross_attn_mask = True |
|
|
|
if use_cross_attn_mask: |
|
self.smoothing = LeditsGaussianSmoothing(self.device) |
|
|
|
if user_mask is not None: |
|
user_mask = user_mask.to(self.device) |
|
|
|
org_prompt = "" |
|
|
|
|
|
self.check_inputs( |
|
negative_prompt, |
|
editing_prompt_embeds, |
|
negative_prompt_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_rescale = guidance_rescale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
|
|
|
|
batch_size = self.batch_size |
|
|
|
if editing_prompt: |
|
enable_edit_guidance = True |
|
if isinstance(editing_prompt, str): |
|
editing_prompt = [editing_prompt] |
|
self.enabled_editing_prompts = len(editing_prompt) |
|
elif editing_prompt_embeds is not None: |
|
enable_edit_guidance = True |
|
self.enabled_editing_prompts = editing_prompt_embeds.shape[0] |
|
else: |
|
self.enabled_editing_prompts = 0 |
|
enable_edit_guidance = False |
|
|
|
|
|
lora_scale = ( |
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None |
|
) |
|
|
|
edit_concepts, uncond_embeddings, num_edit_tokens = self.encode_prompt( |
|
editing_prompt=editing_prompt, |
|
device=self.device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
enable_edit_guidance=enable_edit_guidance, |
|
negative_prompt=negative_prompt, |
|
editing_prompt_embeds=editing_prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
|
|
|
|
|
|
if enable_edit_guidance: |
|
text_embeddings = torch.cat([uncond_embeddings, edit_concepts]) |
|
self.text_cross_attention_maps = [editing_prompt] if isinstance(editing_prompt, str) else editing_prompt |
|
else: |
|
text_embeddings = torch.cat([uncond_embeddings]) |
|
|
|
|
|
|
|
timesteps = self.inversion_steps |
|
t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0] :])} |
|
|
|
if use_cross_attn_mask: |
|
self.attention_store = LeditsAttentionStore( |
|
average=store_averaged_over_steps, |
|
batch_size=batch_size, |
|
max_size=(latents.shape[-2] / 4.0) * (latents.shape[-1] / 4.0), |
|
max_resolution=None, |
|
) |
|
self.prepare_unet(self.attention_store, PnP=False) |
|
resolution = latents.shape[-2:] |
|
att_res = (int(resolution[0] / 4), int(resolution[1] / 4)) |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
None, |
|
None, |
|
text_embeddings.dtype, |
|
self.device, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(eta) |
|
|
|
self.sem_guidance = None |
|
self.activation_mask = None |
|
|
|
|
|
num_warmup_steps = 0 |
|
with self.progress_bar(total=len(timesteps)) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
|
|
if enable_edit_guidance: |
|
latent_model_input = torch.cat([latents] * (1 + self.enabled_editing_prompts)) |
|
else: |
|
latent_model_input = latents |
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
text_embed_input = text_embeddings |
|
|
|
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input).sample |
|
|
|
noise_pred_out = noise_pred.chunk(1 + self.enabled_editing_prompts) |
|
noise_pred_uncond = noise_pred_out[0] |
|
noise_pred_edit_concepts = noise_pred_out[1:] |
|
|
|
noise_guidance_edit = torch.zeros( |
|
noise_pred_uncond.shape, |
|
device=self.device, |
|
dtype=noise_pred_uncond.dtype, |
|
) |
|
|
|
if sem_guidance is not None and len(sem_guidance) > i: |
|
noise_guidance_edit += sem_guidance[i].to(self.device) |
|
|
|
elif enable_edit_guidance: |
|
if self.activation_mask is None: |
|
self.activation_mask = torch.zeros( |
|
(len(timesteps), len(noise_pred_edit_concepts), *noise_pred_edit_concepts[0].shape) |
|
) |
|
|
|
if self.sem_guidance is None: |
|
self.sem_guidance = torch.zeros((len(timesteps), *noise_pred_uncond.shape)) |
|
|
|
for c, noise_pred_edit_concept in enumerate(noise_pred_edit_concepts): |
|
if isinstance(edit_warmup_steps, list): |
|
edit_warmup_steps_c = edit_warmup_steps[c] |
|
else: |
|
edit_warmup_steps_c = edit_warmup_steps |
|
if i < edit_warmup_steps_c: |
|
continue |
|
|
|
if isinstance(edit_guidance_scale, list): |
|
edit_guidance_scale_c = edit_guidance_scale[c] |
|
else: |
|
edit_guidance_scale_c = edit_guidance_scale |
|
|
|
if isinstance(edit_threshold, list): |
|
edit_threshold_c = edit_threshold[c] |
|
else: |
|
edit_threshold_c = edit_threshold |
|
if isinstance(reverse_editing_direction, list): |
|
reverse_editing_direction_c = reverse_editing_direction[c] |
|
else: |
|
reverse_editing_direction_c = reverse_editing_direction |
|
|
|
if isinstance(edit_cooldown_steps, list): |
|
edit_cooldown_steps_c = edit_cooldown_steps[c] |
|
elif edit_cooldown_steps is None: |
|
edit_cooldown_steps_c = i + 1 |
|
else: |
|
edit_cooldown_steps_c = edit_cooldown_steps |
|
|
|
if i >= edit_cooldown_steps_c: |
|
continue |
|
|
|
noise_guidance_edit_tmp = noise_pred_edit_concept - noise_pred_uncond |
|
|
|
if reverse_editing_direction_c: |
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * -1 |
|
|
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c |
|
|
|
if user_mask is not None: |
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * user_mask |
|
|
|
if use_cross_attn_mask: |
|
out = self.attention_store.aggregate_attention( |
|
attention_maps=self.attention_store.step_store, |
|
prompts=self.text_cross_attention_maps, |
|
res=att_res, |
|
from_where=["up", "down"], |
|
is_cross=True, |
|
select=self.text_cross_attention_maps.index(editing_prompt[c]), |
|
) |
|
attn_map = out[:, :, :, 1 : 1 + num_edit_tokens[c]] |
|
|
|
|
|
if attn_map.shape[3] != num_edit_tokens[c]: |
|
raise ValueError( |
|
f"Incorrect shape of attention_map. Expected size {num_edit_tokens[c]}, but found {attn_map.shape[3]}!" |
|
) |
|
|
|
attn_map = torch.sum(attn_map, dim=3) |
|
|
|
|
|
attn_map = F.pad(attn_map.unsqueeze(1), (1, 1, 1, 1), mode="reflect") |
|
attn_map = self.smoothing(attn_map).squeeze(1) |
|
|
|
|
|
if attn_map.dtype == torch.float32: |
|
tmp = torch.quantile(attn_map.flatten(start_dim=1), edit_threshold_c, dim=1) |
|
else: |
|
tmp = torch.quantile( |
|
attn_map.flatten(start_dim=1).to(torch.float32), edit_threshold_c, dim=1 |
|
).to(attn_map.dtype) |
|
attn_mask = torch.where( |
|
attn_map >= tmp.unsqueeze(1).unsqueeze(1).repeat(1, *att_res), 1.0, 0.0 |
|
) |
|
|
|
|
|
attn_mask = F.interpolate( |
|
attn_mask.unsqueeze(1), |
|
noise_guidance_edit_tmp.shape[-2:], |
|
).repeat(1, 4, 1, 1) |
|
self.activation_mask[i, c] = attn_mask.detach().cpu() |
|
if not use_intersect_mask: |
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask |
|
|
|
if use_intersect_mask: |
|
if t <= 800: |
|
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) |
|
noise_guidance_edit_tmp_quantile = torch.sum( |
|
noise_guidance_edit_tmp_quantile, dim=1, keepdim=True |
|
) |
|
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat( |
|
1, self.unet.config.in_channels, 1, 1 |
|
) |
|
|
|
|
|
if noise_guidance_edit_tmp_quantile.dtype == torch.float32: |
|
tmp = torch.quantile( |
|
noise_guidance_edit_tmp_quantile.flatten(start_dim=2), |
|
edit_threshold_c, |
|
dim=2, |
|
keepdim=False, |
|
) |
|
else: |
|
tmp = torch.quantile( |
|
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), |
|
edit_threshold_c, |
|
dim=2, |
|
keepdim=False, |
|
).to(noise_guidance_edit_tmp_quantile.dtype) |
|
|
|
intersect_mask = ( |
|
torch.where( |
|
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], |
|
torch.ones_like(noise_guidance_edit_tmp), |
|
torch.zeros_like(noise_guidance_edit_tmp), |
|
) |
|
* attn_mask |
|
) |
|
|
|
self.activation_mask[i, c] = intersect_mask.detach().cpu() |
|
|
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask |
|
|
|
else: |
|
|
|
noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask |
|
|
|
elif not use_cross_attn_mask: |
|
|
|
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp) |
|
noise_guidance_edit_tmp_quantile = torch.sum( |
|
noise_guidance_edit_tmp_quantile, dim=1, keepdim=True |
|
) |
|
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1, 4, 1, 1) |
|
|
|
|
|
if noise_guidance_edit_tmp_quantile.dtype == torch.float32: |
|
tmp = torch.quantile( |
|
noise_guidance_edit_tmp_quantile.flatten(start_dim=2), |
|
edit_threshold_c, |
|
dim=2, |
|
keepdim=False, |
|
) |
|
else: |
|
tmp = torch.quantile( |
|
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32), |
|
edit_threshold_c, |
|
dim=2, |
|
keepdim=False, |
|
).to(noise_guidance_edit_tmp_quantile.dtype) |
|
|
|
self.activation_mask[i, c] = ( |
|
torch.where( |
|
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], |
|
torch.ones_like(noise_guidance_edit_tmp), |
|
torch.zeros_like(noise_guidance_edit_tmp), |
|
) |
|
.detach() |
|
.cpu() |
|
) |
|
|
|
noise_guidance_edit_tmp = torch.where( |
|
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None], |
|
noise_guidance_edit_tmp, |
|
torch.zeros_like(noise_guidance_edit_tmp), |
|
) |
|
|
|
noise_guidance_edit += noise_guidance_edit_tmp |
|
|
|
self.sem_guidance[i] = noise_guidance_edit.detach().cpu() |
|
|
|
noise_pred = noise_pred_uncond + noise_guidance_edit |
|
|
|
if enable_edit_guidance and self.guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg( |
|
noise_pred, |
|
noise_pred_edit_concepts.mean(dim=0, keepdim=False), |
|
guidance_rescale=self.guidance_rescale, |
|
) |
|
|
|
idx = t_to_idx[int(t)] |
|
latents = self.scheduler.step( |
|
noise_pred, t, latents, variance_noise=zs[idx], **extra_step_kwargs |
|
).prev_sample |
|
|
|
|
|
if use_cross_attn_mask: |
|
store_step = i in attn_store_steps |
|
self.attention_store.between_steps(store_step) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
|
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ |
|
0 |
|
] |
|
image, has_nsfw_concept = self.run_safety_checker(image, self.device, text_embeddings.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return LEditsPPDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|
|
@torch.no_grad() |
|
def invert( |
|
self, |
|
image: PipelineImageInput, |
|
source_prompt: str = "", |
|
source_guidance_scale: float = 3.5, |
|
num_inversion_steps: int = 30, |
|
skip: float = 0.15, |
|
generator: Optional[torch.Generator] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_skip: Optional[int] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
resize_mode: Optional[str] = "default", |
|
crops_coords: Optional[Tuple[int, int, int, int]] = None, |
|
): |
|
r""" |
|
The function to the pipeline for image inversion as described by the [LEDITS++ |
|
Paper](https://arxiv.org/abs/2301.12247). If the scheduler is set to [`~schedulers.DDIMScheduler`] the |
|
inversion proposed by [edit-friendly DPDM](https://arxiv.org/abs/2304.06140) will be performed instead. |
|
|
|
Args: |
|
image (`PipelineImageInput`): |
|
Input for the image(s) that are to be edited. Multiple input images have to default to the same aspect |
|
ratio. |
|
source_prompt (`str`, defaults to `""`): |
|
Prompt describing the input image that will be used for guidance during inversion. Guidance is disabled |
|
if the `source_prompt` is `""`. |
|
source_guidance_scale (`float`, defaults to `3.5`): |
|
Strength of guidance during inversion. |
|
num_inversion_steps (`int`, defaults to `30`): |
|
Number of total performed inversion steps after discarding the initial `skip` steps. |
|
skip (`float`, defaults to `0.15`): |
|
Portion of initial steps that will be ignored for inversion and subsequent generation. Lower values |
|
will lead to stronger changes to the input image. `skip` has to be between `0` and `1`. |
|
generator (`torch.Generator`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make inversion |
|
deterministic. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
height (`int`, *optional*, defaults to `None`): |
|
The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default |
|
height. |
|
width (`int`, *optional*`, defaults to `None`): |
|
The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width. |
|
resize_mode (`str`, *optional*, defaults to `default`): |
|
The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within |
|
the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will |
|
resize the image to fit within the specified width and height, maintaining the aspect ratio, and then |
|
center the image within the dimensions, filling empty with data from image. If `crop`, will resize the |
|
image to fit within the specified width and height, maintaining the aspect ratio, and then center the |
|
image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only |
|
supported for PIL image input. |
|
crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`): |
|
The crop coordinates for each image in the batch. If `None`, will not crop the image. |
|
|
|
Returns: |
|
[`~pipelines.ledits_pp.LEditsPPInversionPipelineOutput`]: Output will contain the resized input image(s) |
|
and respective VAE reconstruction(s). |
|
""" |
|
|
|
self.unet.set_attn_processor(AttnProcessor()) |
|
|
|
self.eta = 1.0 |
|
|
|
self.scheduler.config.timestep_spacing = "leading" |
|
self.scheduler.set_timesteps(int(num_inversion_steps * (1 + skip))) |
|
self.inversion_steps = self.scheduler.timesteps[-num_inversion_steps:] |
|
timesteps = self.inversion_steps |
|
|
|
|
|
x0, resized = self.encode_image( |
|
image, |
|
dtype=self.text_encoder.dtype, |
|
height=height, |
|
width=width, |
|
resize_mode=resize_mode, |
|
crops_coords=crops_coords, |
|
) |
|
self.batch_size = x0.shape[0] |
|
|
|
|
|
image_rec = self.vae.decode(x0 / self.vae.config.scaling_factor, return_dict=False, generator=generator)[0] |
|
image_rec = self.image_processor.postprocess(image_rec, output_type="pil") |
|
|
|
|
|
do_classifier_free_guidance = source_guidance_scale > 1.0 |
|
|
|
lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
|
|
uncond_embedding, text_embeddings, _ = self.encode_prompt( |
|
num_images_per_prompt=1, |
|
device=self.device, |
|
negative_prompt=None, |
|
enable_edit_guidance=do_classifier_free_guidance, |
|
editing_prompt=source_prompt, |
|
lora_scale=lora_scale, |
|
clip_skip=clip_skip, |
|
) |
|
|
|
|
|
variance_noise_shape = (num_inversion_steps, *x0.shape) |
|
|
|
|
|
t_to_idx = {int(v): k for k, v in enumerate(timesteps)} |
|
xts = torch.zeros(size=variance_noise_shape, device=self.device, dtype=uncond_embedding.dtype) |
|
|
|
for t in reversed(timesteps): |
|
idx = num_inversion_steps - t_to_idx[int(t)] - 1 |
|
noise = randn_tensor(shape=x0.shape, generator=generator, device=self.device, dtype=x0.dtype) |
|
xts[idx] = self.scheduler.add_noise(x0, noise, torch.Tensor([t])) |
|
xts = torch.cat([x0.unsqueeze(0), xts], dim=0) |
|
|
|
self.scheduler.set_timesteps(len(self.scheduler.timesteps)) |
|
|
|
zs = torch.zeros(size=variance_noise_shape, device=self.device, dtype=uncond_embedding.dtype) |
|
|
|
with self.progress_bar(total=len(timesteps)) as progress_bar: |
|
for t in timesteps: |
|
idx = num_inversion_steps - t_to_idx[int(t)] - 1 |
|
|
|
xt = xts[idx + 1] |
|
|
|
noise_pred = self.unet(xt, timestep=t, encoder_hidden_states=uncond_embedding).sample |
|
|
|
if not source_prompt == "": |
|
noise_pred_cond = self.unet(xt, timestep=t, encoder_hidden_states=text_embeddings).sample |
|
noise_pred = noise_pred + source_guidance_scale * (noise_pred_cond - noise_pred) |
|
|
|
xtm1 = xts[idx] |
|
z, xtm1_corrected = compute_noise(self.scheduler, xtm1, xt, t, noise_pred, self.eta) |
|
zs[idx] = z |
|
|
|
|
|
xts[idx] = xtm1_corrected |
|
|
|
progress_bar.update() |
|
|
|
self.init_latents = xts[-1].expand(self.batch_size, -1, -1, -1) |
|
zs = zs.flip(0) |
|
self.zs = zs |
|
|
|
return LEditsPPInversionPipelineOutput(images=resized, vae_reconstruction_images=image_rec) |
|
|
|
@torch.no_grad() |
|
def encode_image(self, image, dtype=None, height=None, width=None, resize_mode="default", crops_coords=None): |
|
image = self.image_processor.preprocess( |
|
image=image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords |
|
) |
|
resized = self.image_processor.postprocess(image=image, output_type="pil") |
|
|
|
if max(image.shape[-2:]) > self.vae.config["sample_size"] * 1.5: |
|
logger.warning( |
|
"Your input images far exceed the default resolution of the underlying diffusion model. " |
|
"The output images may contain severe artifacts! " |
|
"Consider down-sampling the input using the `height` and `width` parameters" |
|
) |
|
image = image.to(dtype) |
|
|
|
x0 = self.vae.encode(image.to(self.device)).latent_dist.mode() |
|
x0 = x0.to(dtype) |
|
x0 = self.vae.config.scaling_factor * x0 |
|
return x0, resized |
|
|
|
|
|
def compute_noise_ddim(scheduler, prev_latents, latents, timestep, noise_pred, eta): |
|
|
|
prev_timestep = timestep - scheduler.config.num_train_timesteps // scheduler.num_inference_steps |
|
|
|
|
|
alpha_prod_t = scheduler.alphas_cumprod[timestep] |
|
alpha_prod_t_prev = ( |
|
scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else scheduler.final_alpha_cumprod |
|
) |
|
|
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
|
|
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) |
|
|
|
|
|
if scheduler.config.clip_sample: |
|
pred_original_sample = torch.clamp(pred_original_sample, -1, 1) |
|
|
|
|
|
|
|
variance = scheduler._get_variance(timestep, prev_timestep) |
|
std_dev_t = eta * variance ** (0.5) |
|
|
|
|
|
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * noise_pred |
|
|
|
|
|
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction |
|
if variance > 0.0: |
|
noise = (prev_latents - mu_xt) / (variance ** (0.5) * eta) |
|
else: |
|
noise = torch.tensor([0.0]).to(latents.device) |
|
|
|
return noise, mu_xt + (eta * variance**0.5) * noise |
|
|
|
|
|
def compute_noise_sde_dpm_pp_2nd(scheduler, prev_latents, latents, timestep, noise_pred, eta): |
|
def first_order_update(model_output, sample): |
|
sigma_t, sigma_s = scheduler.sigmas[scheduler.step_index + 1], scheduler.sigmas[scheduler.step_index] |
|
alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s, sigma_s = scheduler._sigma_to_alpha_sigma_t(sigma_s) |
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s = torch.log(alpha_s) - torch.log(sigma_s) |
|
|
|
h = lambda_t - lambda_s |
|
|
|
mu_xt = (sigma_t / sigma_s * torch.exp(-h)) * sample + (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output |
|
|
|
mu_xt = scheduler.dpm_solver_first_order_update( |
|
model_output=model_output, sample=sample, noise=torch.zeros_like(sample) |
|
) |
|
|
|
sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) |
|
if sigma > 0.0: |
|
noise = (prev_latents - mu_xt) / sigma |
|
else: |
|
noise = torch.tensor([0.0]).to(sample.device) |
|
|
|
prev_sample = mu_xt + sigma * noise |
|
return noise, prev_sample |
|
|
|
def second_order_update(model_output_list, sample): |
|
sigma_t, sigma_s0, sigma_s1 = ( |
|
scheduler.sigmas[scheduler.step_index + 1], |
|
scheduler.sigmas[scheduler.step_index], |
|
scheduler.sigmas[scheduler.step_index - 1], |
|
) |
|
|
|
alpha_t, sigma_t = scheduler._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s0, sigma_s0 = scheduler._sigma_to_alpha_sigma_t(sigma_s0) |
|
alpha_s1, sigma_s1 = scheduler._sigma_to_alpha_sigma_t(sigma_s1) |
|
|
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) |
|
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) |
|
|
|
m0, m1 = model_output_list[-1], model_output_list[-2] |
|
|
|
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 |
|
r0 = h_0 / h |
|
D0, D1 = m0, (1.0 / r0) * (m0 - m1) |
|
|
|
mu_xt = ( |
|
(sigma_t / sigma_s0 * torch.exp(-h)) * sample |
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 |
|
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 |
|
) |
|
|
|
sigma = sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) |
|
if sigma > 0.0: |
|
noise = (prev_latents - mu_xt) / sigma |
|
else: |
|
noise = torch.tensor([0.0]).to(sample.device) |
|
|
|
prev_sample = mu_xt + sigma * noise |
|
|
|
return noise, prev_sample |
|
|
|
if scheduler.step_index is None: |
|
scheduler._init_step_index(timestep) |
|
|
|
model_output = scheduler.convert_model_output(model_output=noise_pred, sample=latents) |
|
for i in range(scheduler.config.solver_order - 1): |
|
scheduler.model_outputs[i] = scheduler.model_outputs[i + 1] |
|
scheduler.model_outputs[-1] = model_output |
|
|
|
if scheduler.lower_order_nums < 1: |
|
noise, prev_sample = first_order_update(model_output, latents) |
|
else: |
|
noise, prev_sample = second_order_update(scheduler.model_outputs, latents) |
|
|
|
if scheduler.lower_order_nums < scheduler.config.solver_order: |
|
scheduler.lower_order_nums += 1 |
|
|
|
|
|
scheduler._step_index += 1 |
|
|
|
return noise, prev_sample |
|
|
|
|
|
def compute_noise(scheduler, *args): |
|
if isinstance(scheduler, DDIMScheduler): |
|
return compute_noise_ddim(scheduler, *args) |
|
elif ( |
|
isinstance(scheduler, DPMSolverMultistepScheduler) |
|
and scheduler.config.algorithm_type == "sde-dpmsolver++" |
|
and scheduler.config.solver_order == 2 |
|
): |
|
return compute_noise_sde_dpm_pp_2nd(scheduler, *args) |
|
else: |
|
raise NotImplementedError |
|
|