|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Callable, List, Optional, Union |
|
|
|
import torch |
|
from transformers import ( |
|
T5EncoderModel, |
|
T5Tokenizer, |
|
T5TokenizerFast, |
|
) |
|
|
|
from ...models import AutoencoderOobleck, StableAudioDiTModel |
|
from ...models.embeddings import get_1d_rotary_pos_embed |
|
from ...schedulers import EDMDPMSolverMultistepScheduler |
|
from ...utils import ( |
|
is_torch_xla_available, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from ...utils.torch_utils import randn_tensor |
|
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline |
|
from .modeling_stable_audio import StableAudioProjectionModel |
|
|
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
XLA_AVAILABLE = True |
|
else: |
|
XLA_AVAILABLE = False |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import scipy |
|
>>> import torch |
|
>>> import soundfile as sf |
|
>>> from diffusers import StableAudioPipeline |
|
|
|
>>> repo_id = "stabilityai/stable-audio-open-1.0" |
|
>>> pipe = StableAudioPipeline.from_pretrained(repo_id, torch_dtype=torch.float16) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> # define the prompts |
|
>>> prompt = "The sound of a hammer hitting a wooden surface." |
|
>>> negative_prompt = "Low quality." |
|
|
|
>>> # set the seed for generator |
|
>>> generator = torch.Generator("cuda").manual_seed(0) |
|
|
|
>>> # run the generation |
|
>>> audio = pipe( |
|
... prompt, |
|
... negative_prompt=negative_prompt, |
|
... num_inference_steps=200, |
|
... audio_end_in_s=10.0, |
|
... num_waveforms_per_prompt=3, |
|
... generator=generator, |
|
... ).audios |
|
|
|
>>> output = audio[0].T.float().cpu().numpy() |
|
>>> sf.write("hammer.wav", output, pipe.vae.sampling_rate) |
|
``` |
|
""" |
|
|
|
|
|
class StableAudioPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for text-to-audio generation using StableAudio. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
Args: |
|
vae ([`AutoencoderOobleck`]): |
|
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. |
|
text_encoder ([`~transformers.T5EncoderModel`]): |
|
Frozen text-encoder. StableAudio uses the encoder of |
|
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the |
|
[google-t5/t5-base](https://huggingface.co/google-t5/t5-base) variant. |
|
projection_model ([`StableAudioProjectionModel`]): |
|
A trained model used to linearly project the hidden-states from the text encoder model and the start and |
|
end seconds. The projected hidden-states from the encoder and the conditional seconds are concatenated to |
|
give the input to the transformer model. |
|
tokenizer ([`~transformers.T5Tokenizer`]): |
|
Tokenizer to tokenize text for the frozen text-encoder. |
|
transformer ([`StableAudioDiTModel`]): |
|
A `StableAudioDiTModel` to denoise the encoded audio latents. |
|
scheduler ([`EDMDPMSolverMultistepScheduler`]): |
|
A scheduler to be used in combination with `transformer` to denoise the encoded audio latents. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->projection_model->transformer->vae" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderOobleck, |
|
text_encoder: T5EncoderModel, |
|
projection_model: StableAudioProjectionModel, |
|
tokenizer: Union[T5Tokenizer, T5TokenizerFast], |
|
transformer: StableAudioDiTModel, |
|
scheduler: EDMDPMSolverMultistepScheduler, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
projection_model=projection_model, |
|
tokenizer=tokenizer, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
) |
|
self.rotary_embed_dim = self.transformer.config.attention_head_dim // 2 |
|
|
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
negative_attention_mask: Optional[torch.LongTensor] = None, |
|
): |
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
attention_mask = text_inputs.attention_mask |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
f"The following part of your input was truncated because {self.text_encoder.config.model_type} can " |
|
f"only handle sequences up to {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
text_input_ids = text_input_ids.to(device) |
|
attention_mask = attention_mask.to(device) |
|
|
|
|
|
self.text_encoder.eval() |
|
prompt_embeds = self.text_encoder( |
|
text_input_ids, |
|
attention_mask=attention_mask, |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance and negative_prompt is not None: |
|
uncond_tokens: List[str] |
|
if type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
uncond_input_ids = uncond_input.input_ids.to(device) |
|
negative_attention_mask = uncond_input.attention_mask.to(device) |
|
|
|
|
|
self.text_encoder.eval() |
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input_ids, |
|
attention_mask=negative_attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if negative_attention_mask is not None: |
|
|
|
negative_prompt_embeds = torch.where( |
|
negative_attention_mask.to(torch.bool).unsqueeze(2), negative_prompt_embeds, 0.0 |
|
) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is not None: |
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
if attention_mask is not None and negative_attention_mask is None: |
|
negative_attention_mask = torch.ones_like(attention_mask) |
|
elif attention_mask is None and negative_attention_mask is not None: |
|
attention_mask = torch.ones_like(negative_attention_mask) |
|
|
|
if attention_mask is not None: |
|
attention_mask = torch.cat([negative_attention_mask, attention_mask]) |
|
|
|
prompt_embeds = self.projection_model( |
|
text_hidden_states=prompt_embeds, |
|
).text_hidden_states |
|
if attention_mask is not None: |
|
prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype) |
|
prompt_embeds = prompt_embeds * attention_mask.unsqueeze(-1).to(prompt_embeds.dtype) |
|
|
|
return prompt_embeds |
|
|
|
def encode_duration( |
|
self, |
|
audio_start_in_s, |
|
audio_end_in_s, |
|
device, |
|
do_classifier_free_guidance, |
|
batch_size, |
|
): |
|
audio_start_in_s = audio_start_in_s if isinstance(audio_start_in_s, list) else [audio_start_in_s] |
|
audio_end_in_s = audio_end_in_s if isinstance(audio_end_in_s, list) else [audio_end_in_s] |
|
|
|
if len(audio_start_in_s) == 1: |
|
audio_start_in_s = audio_start_in_s * batch_size |
|
if len(audio_end_in_s) == 1: |
|
audio_end_in_s = audio_end_in_s * batch_size |
|
|
|
|
|
audio_start_in_s = [float(x) for x in audio_start_in_s] |
|
audio_start_in_s = torch.tensor(audio_start_in_s).to(device) |
|
|
|
audio_end_in_s = [float(x) for x in audio_end_in_s] |
|
audio_end_in_s = torch.tensor(audio_end_in_s).to(device) |
|
|
|
projection_output = self.projection_model( |
|
start_seconds=audio_start_in_s, |
|
end_seconds=audio_end_in_s, |
|
) |
|
seconds_start_hidden_states = projection_output.seconds_start_hidden_states |
|
seconds_end_hidden_states = projection_output.seconds_end_hidden_states |
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
seconds_start_hidden_states = torch.cat([seconds_start_hidden_states, seconds_start_hidden_states], dim=0) |
|
seconds_end_hidden_states = torch.cat([seconds_end_hidden_states, seconds_end_hidden_states], dim=0) |
|
|
|
return seconds_start_hidden_states, seconds_end_hidden_states |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
audio_start_in_s, |
|
audio_end_in_s, |
|
callback_steps, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
attention_mask=None, |
|
negative_attention_mask=None, |
|
initial_audio_waveforms=None, |
|
initial_audio_sampling_rate=None, |
|
): |
|
if audio_end_in_s < audio_start_in_s: |
|
raise ValueError( |
|
f"`audio_end_in_s={audio_end_in_s}' must be higher than 'audio_start_in_s={audio_start_in_s}` but " |
|
) |
|
|
|
if ( |
|
audio_start_in_s < self.projection_model.config.min_value |
|
or audio_start_in_s > self.projection_model.config.max_value |
|
): |
|
raise ValueError( |
|
f"`audio_start_in_s` must be greater than or equal to {self.projection_model.config.min_value}, and lower than or equal to {self.projection_model.config.max_value} but " |
|
f"is {audio_start_in_s}." |
|
) |
|
|
|
if ( |
|
audio_end_in_s < self.projection_model.config.min_value |
|
or audio_end_in_s > self.projection_model.config.max_value |
|
): |
|
raise ValueError( |
|
f"`audio_end_in_s` must be greater than or equal to {self.projection_model.config.min_value}, and lower than or equal to {self.projection_model.config.max_value} but " |
|
f"is {audio_end_in_s}." |
|
) |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and (prompt_embeds is None): |
|
raise ValueError( |
|
"Provide either `prompt`, or `prompt_embeds`. Cannot leave" |
|
"`prompt` undefined without specifying `prompt_embeds`." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
if attention_mask is not None and attention_mask.shape != prompt_embeds.shape[:2]: |
|
raise ValueError( |
|
"`attention_mask should have the same batch size and sequence length as `prompt_embeds`, but got:" |
|
f"`attention_mask: {attention_mask.shape} != `prompt_embeds` {prompt_embeds.shape}" |
|
) |
|
|
|
if initial_audio_sampling_rate is None and initial_audio_waveforms is not None: |
|
raise ValueError( |
|
"`initial_audio_waveforms' is provided but the sampling rate is not. Make sure to pass `initial_audio_sampling_rate`." |
|
) |
|
|
|
if initial_audio_sampling_rate is not None and initial_audio_sampling_rate != self.vae.sampling_rate: |
|
raise ValueError( |
|
f"`initial_audio_sampling_rate` must be {self.vae.hop_length}' but is `{initial_audio_sampling_rate}`." |
|
"Make sure to resample the `initial_audio_waveforms` and to correct the sampling rate. " |
|
) |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_vae, |
|
sample_size, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
initial_audio_waveforms=None, |
|
num_waveforms_per_prompt=None, |
|
audio_channels=None, |
|
): |
|
shape = (batch_size, num_channels_vae, sample_size) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
|
|
|
|
if initial_audio_waveforms is not None: |
|
|
|
if initial_audio_waveforms.ndim == 2: |
|
initial_audio_waveforms = initial_audio_waveforms.unsqueeze(1) |
|
elif initial_audio_waveforms.ndim != 3: |
|
raise ValueError( |
|
f"`initial_audio_waveforms` must be of shape `(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)` but has `{initial_audio_waveforms.ndim}` dimensions" |
|
) |
|
|
|
audio_vae_length = int(self.transformer.config.sample_size) * self.vae.hop_length |
|
audio_shape = (batch_size // num_waveforms_per_prompt, audio_channels, audio_vae_length) |
|
|
|
|
|
if initial_audio_waveforms.shape[1] == 1 and audio_channels == 2: |
|
initial_audio_waveforms = initial_audio_waveforms.repeat(1, 2, 1) |
|
elif initial_audio_waveforms.shape[1] == 2 and audio_channels == 1: |
|
initial_audio_waveforms = initial_audio_waveforms.mean(1, keepdim=True) |
|
|
|
if initial_audio_waveforms.shape[:2] != audio_shape[:2]: |
|
raise ValueError( |
|
f"`initial_audio_waveforms` must be of shape `(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)` but is of shape `{initial_audio_waveforms.shape}`" |
|
) |
|
|
|
|
|
audio_length = initial_audio_waveforms.shape[-1] |
|
if audio_length < audio_vae_length: |
|
logger.warning( |
|
f"The provided input waveform is shorter ({audio_length}) than the required audio length ({audio_vae_length}) of the model and will thus be padded." |
|
) |
|
elif audio_length > audio_vae_length: |
|
logger.warning( |
|
f"The provided input waveform is longer ({audio_length}) than the required audio length ({audio_vae_length}) of the model and will thus be cropped." |
|
) |
|
|
|
audio = initial_audio_waveforms.new_zeros(audio_shape) |
|
audio[:, :, : min(audio_length, audio_vae_length)] = initial_audio_waveforms[:, :, :audio_vae_length] |
|
|
|
encoded_audio = self.vae.encode(audio).latent_dist.sample(generator) |
|
encoded_audio = encoded_audio.repeat((num_waveforms_per_prompt, 1, 1)) |
|
latents = encoded_audio + latents |
|
return latents |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
audio_end_in_s: Optional[float] = None, |
|
audio_start_in_s: Optional[float] = 0.0, |
|
num_inference_steps: int = 100, |
|
guidance_scale: float = 7.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_waveforms_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
initial_audio_waveforms: Optional[torch.Tensor] = None, |
|
initial_audio_sampling_rate: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.LongTensor] = None, |
|
negative_attention_mask: Optional[torch.LongTensor] = None, |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
output_type: Optional[str] = "pt", |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide audio generation. If not defined, you need to pass `prompt_embeds`. |
|
audio_end_in_s (`float`, *optional*, defaults to 47.55): |
|
Audio end index in seconds. |
|
audio_start_in_s (`float`, *optional*, defaults to 0): |
|
Audio start index in seconds. |
|
num_inference_steps (`int`, *optional*, defaults to 100): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality audio at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.0): |
|
A higher guidance scale value encourages the model to generate audio that is closely linked to the text |
|
`prompt` at the expense of lower sound quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in audio generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_waveforms_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of waveforms to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for audio |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
initial_audio_waveforms (`torch.Tensor`, *optional*): |
|
Optional initial audio waveforms to use as the initial audio waveform for generation. Must be of shape |
|
`(batch_size, num_channels, audio_length)` or `(batch_size, audio_length)`, where `batch_size` |
|
corresponds to the number of prompts passed to the model. |
|
initial_audio_sampling_rate (`int`, *optional*): |
|
Sampling rate of the `initial_audio_waveforms`, if they are provided. Must be the same as the model. |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-computed text embeddings from the text encoder model. Can be used to easily tweak text inputs, |
|
*e.g.* prompt weighting. If not provided, text embeddings will be computed from `prompt` input |
|
argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-computed negative text embeddings from the text encoder model. Can be used to easily tweak text |
|
inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be computed from |
|
`negative_prompt` input argument. |
|
attention_mask (`torch.LongTensor`, *optional*): |
|
Pre-computed attention mask to be applied to the `prompt_embeds`. If not provided, attention mask will |
|
be computed from `prompt` input argument. |
|
negative_attention_mask (`torch.LongTensor`, *optional*): |
|
Pre-computed attention mask to be applied to the `negative_text_audio_duration_embeds`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that calls every `callback_steps` steps during inference. The function is called with the |
|
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function is called. If not specified, the callback is called at |
|
every step. |
|
output_type (`str`, *optional*, defaults to `"pt"`): |
|
The output format of the generated audio. Choose between `"np"` to return a NumPy `np.ndarray` or |
|
`"pt"` to return a PyTorch `torch.Tensor` object. Set to `"latent"` to return the latent diffusion |
|
model (LDM) output. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated audio. |
|
""" |
|
|
|
downsample_ratio = self.vae.hop_length |
|
|
|
max_audio_length_in_s = self.transformer.config.sample_size * downsample_ratio / self.vae.config.sampling_rate |
|
if audio_end_in_s is None: |
|
audio_end_in_s = max_audio_length_in_s |
|
|
|
if audio_end_in_s - audio_start_in_s > max_audio_length_in_s: |
|
raise ValueError( |
|
f"The total audio length requested ({audio_end_in_s-audio_start_in_s}s) is longer than the model maximum possible length ({max_audio_length_in_s}). Make sure that 'audio_end_in_s-audio_start_in_s<={max_audio_length_in_s}'." |
|
) |
|
|
|
waveform_start = int(audio_start_in_s * self.vae.config.sampling_rate) |
|
waveform_end = int(audio_end_in_s * self.vae.config.sampling_rate) |
|
waveform_length = int(self.transformer.config.sample_size) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
audio_start_in_s, |
|
audio_end_in_s, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
attention_mask, |
|
negative_attention_mask, |
|
initial_audio_waveforms, |
|
initial_audio_sampling_rate, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
attention_mask, |
|
negative_attention_mask, |
|
) |
|
|
|
|
|
seconds_start_hidden_states, seconds_end_hidden_states = self.encode_duration( |
|
audio_start_in_s, |
|
audio_end_in_s, |
|
device, |
|
do_classifier_free_guidance and (negative_prompt is not None or negative_prompt_embeds is not None), |
|
batch_size, |
|
) |
|
|
|
|
|
text_audio_duration_embeds = torch.cat( |
|
[prompt_embeds, seconds_start_hidden_states, seconds_end_hidden_states], dim=1 |
|
) |
|
|
|
audio_duration_embeds = torch.cat([seconds_start_hidden_states, seconds_end_hidden_states], dim=2) |
|
|
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None and negative_prompt is None: |
|
negative_text_audio_duration_embeds = torch.zeros_like( |
|
text_audio_duration_embeds, device=text_audio_duration_embeds.device |
|
) |
|
text_audio_duration_embeds = torch.cat( |
|
[negative_text_audio_duration_embeds, text_audio_duration_embeds], dim=0 |
|
) |
|
audio_duration_embeds = torch.cat([audio_duration_embeds, audio_duration_embeds], dim=0) |
|
|
|
bs_embed, seq_len, hidden_size = text_audio_duration_embeds.shape |
|
|
|
text_audio_duration_embeds = text_audio_duration_embeds.repeat(1, num_waveforms_per_prompt, 1) |
|
text_audio_duration_embeds = text_audio_duration_embeds.view( |
|
bs_embed * num_waveforms_per_prompt, seq_len, hidden_size |
|
) |
|
|
|
audio_duration_embeds = audio_duration_embeds.repeat(1, num_waveforms_per_prompt, 1) |
|
audio_duration_embeds = audio_duration_embeds.view( |
|
bs_embed * num_waveforms_per_prompt, -1, audio_duration_embeds.shape[-1] |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_vae = self.transformer.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_waveforms_per_prompt, |
|
num_channels_vae, |
|
waveform_length, |
|
text_audio_duration_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
initial_audio_waveforms, |
|
num_waveforms_per_prompt, |
|
audio_channels=self.vae.config.audio_channels, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
rotary_embedding = get_1d_rotary_pos_embed( |
|
self.rotary_embed_dim, |
|
latents.shape[2] + audio_duration_embeds.shape[1], |
|
use_real=True, |
|
repeat_interleave_real=False, |
|
) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.transformer( |
|
latent_model_input, |
|
t.unsqueeze(0), |
|
encoder_hidden_states=text_audio_duration_embeds, |
|
global_hidden_states=audio_duration_embeds, |
|
rotary_embedding=rotary_embedding, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
|
|
if not output_type == "latent": |
|
audio = self.vae.decode(latents).sample |
|
else: |
|
return AudioPipelineOutput(audios=latents) |
|
|
|
audio = audio[:, :, waveform_start:waveform_end] |
|
|
|
if output_type == "np": |
|
audio = audio.cpu().float().numpy() |
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (audio,) |
|
|
|
return AudioPipelineOutput(audios=audio) |
|
|